高数答案(下)习题册答案第六版下册同济大学数学系编.doc
《高数答案(下)习题册答案第六版下册同济大学数学系编.doc》由会员分享,可在线阅读,更多相关《高数答案(下)习题册答案第六版下册同济大学数学系编.doc(52页珍藏版)》请在咨信网上搜索。
1、 第八章 多元函数的微分法及其应用 1 多元函数概念 一、设.二、求下列函数的定义域:1、 2、 三、求下列极限: 1、 (0) 2、 () 四、证明极限 不存在.证明:当沿着x轴趋于(0,0)时,极限为零,当沿着趋于(0,0)时,极限为, 二者不相等,所以极限不存在五、证明函数 在整个xoy面上连续。 证明:当时,。当时, ,所以函数在(0,0)也连续。所以函数 在整个xoy面上连续。六、设且当y=0时,求f(x)及z的表达式. 解:f(x)=,z 2 偏导数1、设z= ,验证 证明:,2、求空间曲线在点()处切线与y轴正向夹角()3、设, 求 ( 1)4、设, 求 , , 解: , 5、设
2、,证明 : 6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由 连续; 不存在, 7、设函数 f(x,y)在点(a,b)处的偏导数存在,求 (2fx(a,b)) 3 全微分1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 _ (A) 必要条件而非充分条件 (B)充分条件而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是_ (A) 偏导数不连续,则全微分必不存在 (B)偏导数连续,则全微分必存在 (C)全微分存在,则偏导数必连续 (D)全微分存在,而偏导数不一定存在
3、2、求下列函数的全微分:1) 2) 解: 3) 解:3、设, 求 解: =4、设 求: 5、讨论函数在(0,0)点处的连续性 、偏导数、 可微性解: 所以在(0,0)点处连续。 ,所以可微。 4 多元复合函数的求导法则1、 设,求 解:=2、 设,求 3、 设, 可微,证明 4、 设,其中具有二阶连续偏导数,求, 解: , , = ,5、 设,其中具有二阶连续偏导数、具有二阶连续导数,求解: , 6、 设,求解:。7、设,且变换 可把方程=0 化为 , 其中具有二阶连续偏导数,求常数的值 证明: 得: a=38、设函数f(x,y)具有连续的一阶偏导数,f(1,1)=1,又, 求 和 (1) ,
4、 (a+ab+ab2+b3) 5 隐函数的求导公式1、 设,求解:令,2、 设由方程确定,其中可微,证明 3、 设由方程所确定,其中可微,求 4、 设,求, ( ,)5、 设由方程所确定,可微,求解:令 ,则6、设由方程所确定,求 ()7、设z=z(x,y)由方程 所确定,求, , , 6 微分法在几何中的应用1、 求螺旋线 在对应于处的切线及法平面方程解:切线方程为 法平面方程2、 求曲线 在(3,4,5)处的切线及法平面方程 解:切线方程为 ,法平面方程:3、 求曲面在(1,-1,2)处的切平面及法线方程 解:切平面方程为 及法线方程4、 设可微,证明由方程所确定的曲面在任一点处的切平面与
5、一定向量平行证明:令,则 ,所以在()处的切平面与定向量()平行。5、 证明曲面)上任意一点处的切平面在三个坐标轴上的截距的平方和为证明:令,则 在任一点处的切平面方程为 在在三个坐标轴上的截距分别为在三个坐标轴上的截距的平方和为证明曲面上任意一点处的切平面都通过原点7、设F(x,y,z)具有连续偏导数,且对任意实数t, 总有 k为自然数,试证:曲面F(x,y,z)=0上任意一点的切平面都相交于一定点 证明 : 两边对t 求导,并令t=1 设是曲面上任意一点,则过这点的切平面为: +=0 此平面过原点(0,0,0) 7 方向导数与梯度1、 设函数, 1)求该函数在点(1,3)处的梯度。2)在点
6、(1,3)处沿着方向的方向导数,并求方向导数达到最大和最小的方向解:梯度为 , 方向导数达到最大值的方向为,方向导数达到 最小值的方向为。2、 求函数在(1,2,-1)处沿方向角为的方向导数,并求在该点处方向导数达到最大值的方向及最大方向导数的值。解:方向导数 为,该点处方向导数达到最大值的方向即为梯度的方向 ,此时最大值为 3、 求函数在(1,1,-1)处沿曲线在(1,1,1)处的切线正方向(对应于t增大的方向)的方向导数。解:,该函数在点(1,1,-1)处的方 向导数为,4、求函数在(1,1,-1)处的梯度。解:, 8 多元函数的极值及求法 1、求函数的极值。 答案:(,)极小值点 2求函
7、数的极值 答案:极小值 3. 函数在点(1,1)处取得极值,求常数a (-5) 4、 求函数在条件下的条件极值解: ,极小值为5、 欲造一个无盖的长方体容器,已知底部造价为3元/平方,侧面造价均为1元/平方,现想用36元造一个容积最大的容器,求它的尺寸。(长和宽2米,高3米)6、 在球面()上求一点,使函数 达到极大值,并求此时的极大值。利用此极大值证明 有证明:令令,解得驻点。所以函数在处达到极大值。极大值为。即,令得。 7、求椭球面被平面x+y+z=0截得的椭圆的长半轴与短半轴的 长度解: , 长半轴 , 短半轴 第八章 自测题一、选择题:(每题2分,共14分)1、设有二元函数 则 A、存
8、在;B、不存在;C、存在, 且在(0,0)处不连续;D、存在, 且在(0,0)处连续。2、函数在各一阶偏导数存在且连续是在连续的 A、必要条件; B、充分条件;C、充要条件; D、既非必要也非充分条件。3、函数 在(0,0)点处 A、极限值为1; B、极限值为-1;C、连续; D、无极限。4、在处,存在是函数在该点可微分的 (A)必要条件; (B)充分条件; (C)充要条件; (D)既非必要亦非充分条件。5、点是函数的 (A)极小值点; ( B)驻点但非极值点;(C)极大值点; (D)最大值点。6、曲面在点P(2,1,0)处的切平面方程是 (A); (B);(C); (D)7、已知函数均有一阶
9、连续偏导数,那么 (A); (B) ;(C) ; (D) 二、填空题:(每题分,共18分)1、 ( 0 )、设,则( )、设则( 0 )、设,则在点处的全微分.、曲线在点处的切线方程为( )、曲线在点(1,1,1)处的切线方程为( )三、计算题(每题6分)1、设,求的一阶偏导数 , 。2、设,求此函数在点处的全微分。并求该函数在该点处沿着从 P到方向的方向导数( ,)、设具有各二阶连续偏导数,求解:、设 求和。 不存在,故不存在,同理,也不存在。 当时,有 、设由方程所确定,求 ( )、设,具有连续的二阶偏导数,可导,求 、设确定函数,求。 、设,式中二阶可导,求解:记,则,类似地,有四、(分
10、)试分解正数为三个正数之和,而使它们的倒数和为最小。设三个正数为,则,记,令则由 解出。五、证明题:(分)试证:曲面上任一点处的切平面都平行于一条直线,式中连续可导。证明:曲面在任一点处的切平面的法向量为定直线L的方向向量若为,则,即则曲面上任一点的切平面平行于以(1,1,1)为方向的定直线。第九章 重积分 1 二重积分的概念与性质1、 由二重积分的几何意义求二重积分的值 其中D为: ( =)2、 设D为圆域若积分=,求a的值。解: = 3、 设D由圆求 解:由于D的面积为, 故=4、设D:, ,比较, 与的大小关系解:在D上, ,故5、 设f(t)连续,则由平面 z=0,柱面 和曲面所围的
11、立体的体积,可用二重积分表示为6、根据二重积分的性质估计下列积分的值 ()7、设f(x,y)为有界闭区域D:上的连续函数,求 解:利用积分中值定理及连续性有 2 二重积分的计算法1、设,其中D是由抛物线与直线y=2x,x=0所围成的区域,则I=( ) A : B : C : D : 2、设D是由不等式所确定的有界区域,则二重积分为 ( )A :0 B: C : D: 13、设D是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 为( ) A: B : C : D:4、 设f(x,y)是连续函数,则二次积分为( ) A B C D 5、设有界闭域D1、D2关于oy轴对称,f是域
12、D=D1+D2上的连续函数,则二重 积分为( ) A B C D 6、设D1是由ox轴、oy轴及直线x+y=1所围成的有界闭域,f是域D:|x|+|y|1 上的连续函数,则二重积分为( ) A B C D 7、.设f(x,y)为连续函数,则为( ) A B C D 8、求 ,其中 由x=2,y=x,xy=1所围成. ()9、设I=,交换积分次序后I为: I=10、改变二次积分的次序: = 11、设 D=(x,y)|0x1,0y1 ,求的值 解:=12设 I=,其中D是由x2+y2=Rx所围城的区域,求I ()13、计算二重积分,其中D是圆域 解:=14、计算二重积分,其中D=(x,y)| 0x
13、1,0y1 解: =15、计算二重积分,D: 解:= 3 三重积分1、设是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则为( ) A B C D 2、设是由曲面x2+y2=2z ,及z=2所围成的空间有界域,在柱面坐标系下将三重积分表示为累次积分,I=( ) A B C D 3、设是由所确定的有界闭域,求三重积分 解:=24、设是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求 (1/364) 5、设是球域:,求 (0) 6、计算 其中为:平面z=2与曲面所围成的 区域 ()7、计算其中是由平面z=0,z=y,y=1以及y=x2所围成的闭区域(2/27) 8、
14、设函数f(u)有连续导数,且f(0)=0,求 解:= 4 重积分的应用1、(1)、由面积=2x, =4x,y=x,y=0所围成的图形面积为( ) A B C D (2) 、位于两圆与之间,质量分布均匀的薄板重心坐标是( ) A (0,) B (0,) C (0,) D (0,)(3)、由抛物面和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( ) A () B () C () D ()(4)、 质量分布均匀(密度为)的立方体所占有空间区域:,该立方体到oz轴的转动惯量IZ=( ) A B C D 2、求均匀上半球体(半径为R)的质心解:显然质心在z轴上,故x=y=0,z= 故质心为(0,0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 答案 习题 第六 下册 同济大学 数学系
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。