主成分分析PCA(含有详细推导过程以和案例分析matlab版).doc
《主成分分析PCA(含有详细推导过程以和案例分析matlab版).doc》由会员分享,可在线阅读,更多相关《主成分分析PCA(含有详细推导过程以和案例分析matlab版).doc(11页珍藏版)》请在咨信网上搜索。
1、主成分分析法(PCA)在实际问题中.我们经常会遇到研究多个变量的问题.而且在多数情况下.多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性.势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量.既能够代表原始变量的绝大多数信息.又互不相关.并且在新的综合变量基础上.可以进一步的统计分析.这时就需要进行主成分分析。I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法.找出几个综合变量来代替原来众多的变量.使这些综合变量能尽可能地代表原来变量的信息量.而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的
2、统计分析方法就叫做主成分分析或主分量分析。主成分分析所要做的就是设法将原来众多具有一定相关性的变量.重新组合为一组新的相互无关的综合变量来代替原来变量。通常.数学上的处理方法就是将原来的变量做线性组合.作为新的综合变量.但是这种组合如果不加以限制.则可以有很多.应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为.自然希望它尽可能多地反映原来变量的信息.这里“信息”用方差来测量.即希望越大.表示包含的信息越多。因此在所有的线性组合中所选取的应该是方差最大的.故称为第一主成分。如果第一主成分不足以代表原来个变量的信息.再考虑选取即第二个线性组合.为了有效地反映原来信息.已有的信息就不需
3、要再出现在中.用数学语言表达就是要求.称为第二主成分.依此类推可以构造出第三、四第个主成分。(二)主成分分析的数学模型对于一个样本资料.观测个变量.个样品的数据资料阵为:其中:主成分分析就是将个观测变量综合成为个新的变量(综合变量).即简写为: 要求模型满足以下条件:互不相关(.)的方差大于的方差大于的方差.依次类推 于是.称为第一主成分.为第二主成分.依此类推.有第个主成分。主成分又叫主分量。这里我们称为主成分系数。上述模型可用矩阵表示为:.其中 称为主成分系数矩阵。(三)主成分分析的几何解释假设有个样品.每个样品有二个变量.即在二维空间中讨论主成分的几何意义。设个样品在二维空间中的分布大致
4、为一个椭园.如下图所示:图1 主成分几何解释图将坐标系进行正交旋转一个角度.使其椭圆长轴方向取坐标.在椭圆短轴方向取坐标.旋转公式为写成矩阵形式为:其中为坐标旋转变换矩阵.它是正交矩阵.即有.即满足。经过旋转变换后.得到下图的新坐标:图2 主成分几何解释图新坐标有如下性质:(1)个点的坐标和的相关几乎为零。(2)二维平面上的个点的方差大部分都归结为轴上.而轴上的方差较小。和称为原始变量和的综合变量。由于个点在轴上的方差最大.因而将二维空间的点用在轴上的一维综合变量来代替.所损失的信息量最小.由此称轴为第一主成分.轴与轴正交.有较小的方差.称它为第二主成分。II. 主成分分析法(PCA)推导一、
5、主成分的导出 根据主成分分析的数学模型的定义.要进行主成分分析.就需要根据原始数据.以及模型的三个条件的要求.如何求出主成分系数.以便得到主成分模型。这就是导出主成分所要解决的问题。1、根据主成分数学模型的条件要求主成分之间互不相关.为此主成分之间的协差阵应该是一个对角阵。即.对于主成分.其协差阵应为.=2、设原始数据的协方差阵为.如果原始数据进行了标准化处理后则协方差阵等于相关矩阵.即有.3、再由主成分数学模型条件和正交矩阵的性质.若能够满足条件最好要求为正交矩阵.即满足于是.将原始数据的协方差代入主成分的协差阵公式得展开上式得展开等式两边.根据矩阵相等的性质.这里只根据第一列得出的方程为:
6、为了得到该齐次方程的解.要求其系数矩阵行列式为0.即显然.是相关系数矩阵的特征值.是相应的特征向量。根据第二列、第三列等可以得到类似的方程.于是是方程的个根.为特征方程的特征根.是其特征向量的分量。4、下面再证明主成分的方差是依次递减设相关系数矩阵的个特征根为.相应的特征向量为相对于的方差为同样有:.即主成分的方差依次递减。并且协方差为:综上所述.根据证明有.主成分分析中的主成分协方差应该是对角矩阵.其对角线上的元素恰好是原始数据相关矩阵的特征值.而主成分系数矩阵的元素则是原始数据相关矩阵特征值相应的特征向量。矩阵是一个正交矩阵。于是.变量经过变换后得到新的综合变量新的随机变量彼此不相关.且方
7、差依次递减。二、主成分分析的计算步骤假设样本观测数据矩阵为:第一步:对原始数据进行标准化处理。 其中 第二步:计算样本相关系数矩阵。为方便.假定原始数据标准化后仍用表示.则经标准化处理后的数据的相关系数为: 第三步:用雅克比方法求相关系数矩阵的特征值()和相应的特征向量。第四步:选择重要的主成分.并写出主成分表达式。主成分分析可以得到个主成分.但是.由于各个主成分的方差是递减的.包含的信息量也是递减的.所以实际分析时.一般不是选取个主成分.而是根据各个主成分累计贡献率的大小选取前个主成分.这里贡献率就是指某个主成分的方差占全部方差的比重.实际也就是某个特征值占全部特征值合计的比重。即贡献率=贡
8、献率越大.说明该主成分所包含的原始变量的信息越强。主成分个数的选取.主要根据主成分的累积贡献率来决定.即一般要求累计贡献率达到85%以上.这样才能保证综合变量能包括原始变量的绝大多数信息。另外.在实际应用中.选择了重要的主成分后.还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义.给出合理的解释。一般而言.这个解释是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合.在这个线性组合中个变量的系数有大有小.有正有负.有的大小相当.因而不能简单地认为这个主成分是某个原变量的属性的作用.线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大
9、的变量.有几个变量系数大小相当时.应认为这一主成分是这几个变量的总和.这几个变量综合在一起应赋予怎样的实际意义.这要结合具体实际问题和专业.给出恰当的解释.进而才能达到深刻分析的目的。第五步:计算主成分得分。根据标准化的原始数据.按照各个样品.分别代入主成分表达式.就可以得到各主成分下的各个样品的新数据.即为主成分得分。具体形式可如下。第六步:依据主成分得分的数据.则可以进行进一步的统计分析。其中.常见的应用有主成份回归.变量子集合的选择.综合评价等。III. 主成分分析法(PCA)案例为了系统的分析某IT类企业的经济效益.选择统计了8个不同的利润指标.15家企业关于这8个指标的统计数据如下所
10、示.试对此进行主成分分析.并进行相关评价。 15家企业的利润指标的统计数据变量企业序号净产值利润率(%) 固定资产利润率(%) 总产值利润率(%)销售收入利润率(%)产品成本利润率(%)物耗利润率(%)人均利润率 (千元/人) 流动资金利润率(%)140.424.77.26.18.38.72.44220.0225.012.711.211.012.920.23.5429.1313.23.33.94.34.45.50.5783.6422.36.75.63.76.07.40.1767.3534.311.87.17.18.08.91.72627.5635.612.516.416.722.829.33.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成分 分析 PCA 含有 详细 推导 过程 案例 matlab
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。