探索勾股定理练习题1.doc
《探索勾股定理练习题1.doc》由会员分享,可在线阅读,更多相关《探索勾股定理练习题1.doc(11页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 7.1探索勾股定理 (1) 基础训练 1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬 来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应 为 米. 2.如图1-1-1,小张为测量校园内池塘A,B两点的距离,他在池塘边选定一点C,使∠ABC=90°,并测得AC长26m,BC长24m,则A,B两点间的距离为 m. 3.如图1-1-2,阴影部分是一个半圆,则阴影部分的面积为 .(不取近似值) 4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为 cm. 5.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距 km. 提高训练 6.一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端滑动 m. 7.如图1-1-3所示的图形中,所有的四边形都是正方形,所有的三角形都是直角 三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和 是 cm2. 8.已知Rt△ABC中,∠C=90°,若cm,cm,则Rt△ABC的面积为( ). (A)24cm2 (B)36cm2 (C)48cm2 (D)60cm2 9.如图1-1-4,分别以直角三角形的三边为边长向外作正方形,然后分别以三个 正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( ). (A) (B) (C) (D)无法确定 10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝. 他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为 km. 知识拓展 11.如图1-1-6,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积. 图1-1-6 12.如图1-1-7,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长. 图1-1-7 7.1探索勾股定理 (2) 基础训练 1.斜边为,一条直角边长为的直角三角形的面积是( ) (A) 60 (B) 30 (C) 90 (D) 120 2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A)13 (B)8 (C)25 (D)64 3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( ) (A)25 (B)14 (C)7 (D)7或25 4. 在直角三角形中,斜边=2,则=______. 5. 直角三角形的三边长为连续偶数,则其周长为 . 图1-1-8 6. 如图1-1-8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 提高训练 7. 如图1-1-9,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 8. 如图1-1-10,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积. 图1-1-10 图1-1-9 9.伽菲尔德(,1881年任美国第20届总统)利用两个全等的三角形拼成如图图形,,,且三点共线,证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程. 图1-1-11 知识拓展 10.如图,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长. 图1-1-12 7.1探索勾股定理 (3) 基础训练 1.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是( ). (A)60cm2 (B)64 cm2 (C)24 cm2 (D)48 cm2 2.如图1-1-3,把矩形纸条沿同时折叠,两点恰好落在边的点处,若,,,则矩形的边长为( ) 12 5 A. B. C. D. 图1-1-14 图1-1-15 图1-1-13 3.如图1-1-14,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是( ). (A)20cm (B)10cm (C)14cm (D)无法确定 4.如图1-1-15是一个圆柱形饮料罐,底面半径是5,高是12,上底 面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( ) A. B. C. D. 提高训练 5.一个直角三角形的三边长的平方和为200,则斜边长为 6.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图1-1-16所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是 . 7.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为( ) A.4 B.6 C.16 D.55 a b c l 1-1-17 图1-1-16 图1-1-18 8.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:),计算两圆孔中心和的距离为______. C A B E D 9.如图1-1-19,已知中,,cm,cm.现将进行折叠,使顶点重合,则折痕 cm. 图1-1-19 A B C 图1-1-20 图1-1-20 10.图1-1-20是我国古代著名的“赵爽弦图”的示意图, 它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图-2所示的“数学风车”,则这个风车的外围周长是 . 11. 如图1-1-21,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处? A D E B C 图1-1-21 12. 已知,如图1-1-22,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。 A B C D 1-1-22 13. 如图1-1-23,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米? 图1-1-23 知识拓展 14. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少? 图1-1-24 7.2 你能得到直角三角形吗 基础题 1.下列各组数中不能作为直角三角形的三边长的是( ) A. 1.5, 2, 3; B. 7,24,25; C. 6,8,10; D. 9,12,15 2.将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角形. 3.适合下列条件的△ABC中, 直角三角形的个数为( ) ①②∠A=450;③∠A=320, ∠B=580; ④ ⑤ A. 2个; B. 3个; C. 4个; D. 5个. 4.已知△ABC的三边分别长为、、,且满足++=0,则△ABC是( ). A.以为斜边的直角三角形 B.以为斜边的直角三角形 C.以为斜边的直角三角形 D.不是直角三角形 5.满足的三个正整数,称为 。 6.三角形的三边长分别是15,36,39,这个三角形是 三角形。 A B 图1-2-1 C D 7.在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °。 8. 直角三角形的三边长为连续偶数,则其周长为 。 9、如图1-2-1,已知四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°, 请问∠D等于90°吗?请说明理由。 10 .如图所示,在△ABC中,D是BC边上的一点,已知AB=15,AD=12,AC=13,BD=9,求BC的长. 11.在如图所示的图形中,AB =12,BC=13,CD=4,AD=3,AD⊥CD,求这个图形的面积. 提高题 12、在△ABC中,AB=15,AC=13,高AD=12,则三角形的周长是 ( ) (A)42 (B)32 (C)42或32 (D)37或33 13.如图,在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,试判断AD与AB的位置关系. 7.3 蚂蚁怎样走最近 A B 一、 基础题: 1. △ABC中,,中线,则 . 2. 有一圆柱形罐,如图1,要以点环绕油罐建梯子,正好到点的正上方点,则梯子最短需 米.(油罐周长12m,高m) 图1 港口 A B C 3. 上午8:00,甲船从港口出发,以20海里/时的速度向东行驶,半个小时后,乙船也由同一港口出发,以相同的速度向南航行,上午10:00时,甲、乙两船相距多少远? 800m 600m B A D C 4. 如图2所示,长方形公园里要建一条小石子路,要求连结两个景点,则石子路最短要多长? 图2 二、提高题 A B 1. 如图3所示,一棱长为3cm的正方体上有一些线段,把所有的面都分成个小正方形,其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点沿表面爬行至右侧点,最少要花几分钟? 图3 2. 如图4所示,一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看做圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,问:丝带共有多长? 图4 A B D C 北 东 3. 如图5,某船向正东方向航行,在处望见某岛在北偏东,该船前进6海里到达点,则望见岛在北偏东,已知在岛周围6海里内有暗礁,问若船继续向东航行,有无触礁的危险?并说明理由. 图5 4. 一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长? 5. 某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗? Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 探索 勾股定理 练习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文