《抽样技术》第四版习题答案(可打印修改).pdf
《《抽样技术》第四版习题答案(可打印修改).pdf》由会员分享,可在线阅读,更多相关《《抽样技术》第四版习题答案(可打印修改).pdf(38页珍藏版)》请在咨信网上搜索。
1、0第第 2 章章 解:这种抽样方法是等概率的。在每次抽取样本单元时,尚未被抽中的编2.1 1号为 164 的这些单元中每一个单元被抽到的概率都是。1100这种抽样方法不是等概率的。利用这种方法,在每次抽取样本单元时,尚未被抽 2中的编号为 135 以及编号为 64 的这 36 个单元中每个单元的入样概率都是,而尚未2100被抽中的编号为 3663 的每个单元的入样概率都是。1100这种抽样方法是等概率的。在每次抽取样本单元时,尚未被抽中的编号为 20 300021 000 中的每个单元的入样概率都是,所以这种抽样是等概率的。11 000解:2.2项目项目相同之处相同之处不同之处不同之处定义定义
2、都是根据从一个总体中抽样得到的样本,然后定义样本均值为。_11niiyyn抽样理论中样本是从有限总体中按放回的抽样方法得到的,样本中的样本点不会重复;而数理统计中的样本是从无限总体中利用有放回的抽样方法得到的,样本点有可能是重复的。性质性质(1)样本均值的期望都等于总体均值,也就是抽样理论和数理统计中的样本均值都是无偏估计。(2)不论总体原来是何种分布,在样本量足够大的条件下,样本均值近似服从正态分布。(1)抽样理论中,各个样本之间是不独立的;而数理统计中的各个样本之间是相互独立的。(2)抽样理论中的样本均值的方差为,21fV ySn其中。在数理统计中,2_211iSYYN,其中为总体的方差。
3、21V yn2 解:首先估计该市居民日用电量的 95%的置信区间。根据中心极限定理可知,在2.3大样本的条件下,近似服从标准正态分布,的的置 _yE yyYV yV y_Y195%信区间为。22,1.96,1.96yzV yyzV yyV yyV y1而中总体的方差是未知的,用样本方差来代替,置信区间 21fV ySn2S2s为。111.96,1.96ffys ysnn由题意知道,而且样本量为,代入可以求得_29.5,206ys300,50 000nN。将它们代入上面的式子可得该市居民_211 300 50 000()2060.682 5300fv ysn日用电量的 95%置信区间为。7.88
4、0 8,11.119 2下一步计算样本量。绝对误差限和相对误差限的关系为。dr_drY根据置信区间的求解方法可知 _11yYrYPyYrYPVyVy 根据正态分布的分位数可以知道,所以。_21y YPZV y 2_2rYV yz也就是。2_2_222/221111rYrYSnNzSnNz把代入上式可得,。所以样_29.5,206,10%,50 000ysrN861.75862n 本量至少为 862。解:总体中参加培训班的比例为,那么这次简单随机抽样得到的的估计值2.4PP的方差,利用中心极限定理可得在大样本的条件p 111fNV pPPnN pPV p下近似服从标准正态分布。在本题中,样本量足
5、够大,从而可得的的置信P195%区间为。22,pzV ppzV p而这里的是未知的,我们使用它的估计值 V p2。所以总体比例的的置信区 5119.652 101fV pv pppnP195%间可以写为,将代入可 22,pzv ppzv p0.35,200,10 000pnN得置信区间为。0.284 4,0.415 6 解:利用得到的样本,计算得到样本均值为,从而估计2.52 890/20144.5y 小区的平均文化支出为 144.5 元。总体均值的的置信区间为_Y195%,用来估计样本均值的方差。22,yzV yyzV y 21fv ysn V y计算得到,则,2826.025 6s 211
6、 0.1826.025 637.17220fv ysn,代入数值后计算可得总体均值的 95%的置信区间 21.9637.17211.95zV y为。132.55,156.45 解:根据样本信息估计可得每个乡的平均产量为 1 120 吨,该地区今年的粮食总2.6产量的估计值为(吨)。Y_5350350 11203.92 10Yy总体总值估计值的方差为,总体总值的的置信区221NfV YSn195%间为,把22,YzV YYzV Y523.92 10,25 600,50,350,YSnN代入,可得粮食总产量的的置信区间为2,1.96nfzN195%。377 629,406 371 解:首先计算简单
7、随机抽样条件下所需要的样本量,把2.7带入公式,最后可得21 000,2,195%,68NdS2022/211dnNzS。061.362n 如果考虑到有效回答率的问题,在有效回答率为 70%时,样本量应该最终确定为。070%88.5789nn 解:去年的化肥总产量和今年的总产量之间存在较强的相关性,而且这种相关关2.8系较为稳定,所以引入去年的化肥产量作为辅助变量。于是我们采用比率估计量的形式来3估计今年的化肥总产量。去年化肥总产量为。利用去年的化肥总产量,今年的213 5X 化肥总产量的估计值为吨。_2 426.14RyYR XXx 解:本题中,简单估计量的方差的估计值为=37.17。2.9
8、 21fv ysn利用比率估计量进行估计时,我们引入了家庭的总支出作为辅助变量,记为。文化X支出属于总支出的一部分,这个主要变量与辅助变量之间存在较强的相关关系,而且它们之间的关系是比较稳定的,且全部家庭的总支出是已知的量。文化支出的比率估计量为,通过计算得到,_RyyR XXx2 890/20144.5y 而,则,文化支出的比率估计量的值为_1 580 x _144.50.091 51 580yRx(元)。_146.3Ry 现在考虑比率估计量的方差,在样本量较大的条件下,通过计算可以得到两个变量的样22212RRxxfV yMSE ySR S SR Sn本方差为,之间的相关系数的估计值为,2
9、24826,9.958 10 xssYX和0.974代入上面的公式,可以得到比率估计量的方差的估计值为。这个数值_1.94Rv y比简单估计量的方差估计值要小很多。全部家庭的平均文化支出的的195%置信区间为,把具体22,1.96,1.96RRRRRRRRyzv yyzv yyv yyv y的数值代入可得置信区间为。143.57,149.03接下来比较比估计和简单估计的效率,这是比 _1.940.05237.17RRVyv yV yv y估计的设计效应值,从这里可以看出比估计量比简单估计量的效率更高。解:利用简单估计量可得,样本方差为2.101 630/10163iyy n,样本均值的方差估计
10、值为2212.222s 120N。211 10/120212.22219.453 710fv ysn4利用回归估计的方法,在这里选取肉牛的原重量为辅助变量。选择原重量为辅助变量是合理的,因为肉牛的原重量在很大程度上影响着肉牛的现在的重量,二者之间存在较强的相关性,相关系数的估计值为,而且这种相关关系是稳定的,这里肉牛的原0.971重量的数值已经得到,所以选择肉牛的原重量为辅助变量。回归估计量的精度最高的回归系数的估计值为。14.5680.9711.36810.341xss现在可以得到肉牛现重量的回归估计量为,代入数值可以得到_lryyXx。_159.44lry回归估计量的方差为,方差的估计值为
11、_lry_2211lrlrfVyMSE ySn,代入相应的数值,显2_211lrfv ysn2_2111.112lrfv ysn然有。在本题中,因为存在肉牛原重量这个较好的辅助变量,所以回归估 _lrv yv y计量的精度要好于简单估计量。第第 3 章章3.1 解:在分层随机抽样中,层标志的选择很重要。划分层的指标应该与抽样调查中最关心的调查变量存在较强的相关性,而且把总体划分为几个层之后,层应该满足:层内之间的差异尽可能小,层间差异尽可能大。这样才能使得最后获得的样本有很好的代表性。对几种分层方法的判断如下:(1)选择性别作为分层变量,是不合适的。首先,性别这个变量与研究最关心的变量(不同职
12、务,职称的人对分配制度改革的态度)没有很大的相关性;其次,用性别作为分层变量后,层内之间的差异仍然很大,相反,层之间的差异不是很大,因为男性和女性各自内部的职务,职称也存在很大的差别;最后,选择性别作为分层变量后,需要首先得到男性和女性的抽样框,这样会更加麻烦,也会使抽样会变得更加复杂。(2)按照教师、行政管理人员和职工进行分层,是合适的。这种分层的指标与抽样调查研究中最关心的变量高度相关,而且按照这种方法分层后,可以看出层内对于分配制度改革的态度差异比较小,因为他们属于相同的阶层,而层之间的态度的差异是比较大的。这样选取出来的样本具有很好的代表性。(3)按照职称(正高、副高、中级、初级和其他
13、)分层,也是合理的。理由与(2)相同,这样进行分层的变量选择与调查最关心的变量是高度相关的,分层后的层满足分层的5要求。所以,按照职称进行分层是合理的。(4)按照部门进行分层,是合理的。因为学校有很多院、系或者所,直接进行简单随机抽样,有可能样本不能很好地代表各个院系,最关心的变量与部门也存在一定的相关性。这样分层后,每个层的总体数目和抽取的样本量都较小,最终的样本的分布比较均匀,比简单随机抽样更加方便实施。3.2 解:设计的方案如下:第一种方案:可以按照不同的专业进行分层,但是考虑到如果在每层都抽取,不能保证每个新生的入样概率相等,因为每个专业的人数比例未知,8 个人的样本量无法在每个层之间
14、进行分配。所以采取如下方法:对所有的新生按照专业的先后顺序进行编号,使得每个专业的人的编号在一起,然后随机选取出一个号码,然后选取出这个号码所在的专业,选取出这个专业,再在这个专业的所有新生中按照简单随机抽样的方法选取出 8 个人。这样就可以保证每个人入选的概率是相等的。第二种方案:也可以按照性别进行分类,对他们进行编号,为 1800,使得男生的编号都在一起,女生的编号也都在一起,然后随机选取出一个号码,然后看这个号码所对应的性别,然后从这个性别的所有人中按照简单随机抽样的方法选取出 8 个新生。这样就可以保证所有的新生的入样概率是相同的。第三种方案:随机地把所有的人分成 8 组,而且使得每组
15、的人都是 100 个人,这样分组完成后,每个组的新生进行编号为 1100,然后随机抽取出一个号码,再从所有的小组中抽取出号码所对应的新生,从而抽取出 8 个人。3.3 解:(1)首先计算出每层的简单估计量,分别为,其_12311.2,25.5,20yyy中,则每个层的层权分别为;123256,420,168,844NNNN3121230.303 3,0.497 6,0.199 1NNNWWWNNN则利用分层随机抽样得到该小区居民购买彩票的平均支出的估计量,代入_hhstyW y数值可以得到。_20.07hhstyW y购买彩票的平均支出的的估计值的方差为,此方差的估计3_2211hhhsthh
16、fVyWSn值为,根据数据计算可以得到每层的样本方差分别为:3_2211hhhsthhfv yWsn22212194.4,302.5,355.556sss其中,代入数值可以求得方差的估计值为,则估计的标12310nnn_9.4731stv y准差为。_9.47313.08ststs yv y(2)由区间估计可知相对误差限满足6_11ststststyYrYPyYrYPV yV y 所以,。_2strYzV y2_2strYV yz样本均值的方差为,从而可以2232221111hhhsthhhhhhhfW SV yWSW SnnN得到在置信度为,相对误差限为条件下的样本量为r。22222_222
17、11hhhhhhsthhhhW SW SnV yW SrY zW SNN对于比例分配而言,有成立,那么,把相应hhW22_221hhhhW SnrY zW SN的估计值和数值代入后可以计算得到样本量为,相应的在各195%,10%r186n 层的样本量分别为。1231256.457,92.693,18636nnnnn按照内曼分配时,样本量在各层的分配满足,这时样本量的计hhhhhW SW S算公式变为,把相应的数值代入后可得,在各层中22_221hhhhW SnrY ZW SN175n 的分配情况如下:。1231233,87,18666nnnnn3.4 解:(1)首先计算得到每层中在家吃年夜饭的
18、样本比例为,那么根据每1234560.9,0.933 3,0.9,0.866 7,0.933 3,0.966 7pppppp一层的层权,计算得到该市居民在家吃年夜饭的样本比例为。6192.4%sthhhpW p每一层中在家吃年夜饭的样本比例的方差为,则该市居民在家吃年夜饭的比例11111hhhhhhhhhhhhhPPfNNnV pPPnNNn7的方差,在的条件下,1hhNN 266221111hhhsthhhhhNNnV pW V pNN,而其中每层的吃年夜饭的样本比例的方差的估计621111hhhhhhhhhPPPPWfnn值为,则样本比例的方差的估计值11111hhhhhhhhhhhhhp
19、pfnNnv pppnnNn为,把相应的数值代入计算可得方差的662211111hhsthhhhhhhppv pW v pWfn估计值为,从而可以得到该估计值的标准差为。43.960 1 10stv p0.019 9sts p(2)利用上题的结果,这里的2222222211hhhhhhsthhhhW SW SnV pW SrP ZW SNN方差是,在的条件下,近似有。211hhhhhNSPPN1hhNN 21hhhSPP比例分配的条件下,有成立,那么,把相应hhW22221hhhhW SnrP zW SN的估计值和数值代入可以求得最终的样本量应该是,样本量在各层的266 3n 分配是,1234
20、79.34479,559.23559,372.83373nnn,4239.67240n。56426.08426,585.86586nn内曼分配条件下,则,代入相hhhhhW SW S22221hhhhW SnrP ZW SN应的估计值和数值可以计算得到样本量为,在各层中样本量的分配为256 5n。123456536,520,417,304,396,392nnnnnn3.5 解:总体总共分为 10 个层,每个层中的样本均值已经知道,层权也得到,从而可以计算得到该开发区居民购买冷冻食品的平均支出的估计值为。10175.79sthhhyW y8下一步计算平均支出的 95%的置信区间,首先计算购买冷冻
21、食品的平均支出的估计值的方差,其中,但是每层的方差是未知,则样本平均支出的方10_2211hsthhhhfVyWSn差的估计值为,每个层的样本标准差已知,题目中已经注明各层10_2211hsthhhhfv yWsn的抽样比可以忽略,计算可以得到。则这个开发区的10_221159.825 4hhhsthhfv yWsn居民购买冷冻食品的平均支出置信区间为195%_22,ststyzv yyzv y_1.96,1.96ststyv yyv y代入数值后,可得最终的置信区间为。60.63,90,953.6 解:首先计算简单随机抽样的方差,根据各层的层权和各层的总体比例可以得到总体的比例为,则样本量为
22、 100 的简单随机样本的样本比例的方差为310.28hhhPW P,不考虑有限总体校正系数,其中,21fV pSn 21V pSn211NSPPN在的条件下,通过简单随机抽样得到的样本比例的方差为1NN 231112.016 10fV pSPPnn 通过分层抽样得到的样本比例的方差为,但是因为不考虑有221hsthhhfV pWSn限总体校正系数,而且抽样方式是比例抽样,所以有成立,样本比例hhhhNnWNn的方差近似为。对于每一层,分别有221hhsthhW SV pW Snn,在的条件下,近似的有成立,有211hhhhhNSPPN1hhNN 21hhhSPP2221230.09,0.16
23、,0.24SSS 样本量应该满足,同时这里要求分层随机抽样得到的估计的方差和简单2hhstW SnV p9抽样的方差是相同的,层权分别为,代入数值,stV pV p1230.2,0.3,0.5WWW可以计算得到最终的样本量为。230.18692.26932.016 10hhstW SnV p3.7 解:事 后分层得到的总体均值的估计量和估计量的方差分别为_,pstpstE yY E Var y,估计量的方差的估计值222111hhhhfW SWSnn21psthhfv yW sn。2211hhWsn对于几种说法的判断如下:(1)事后分层比简单随机抽样产生更加精确的结果,这个说法是错误的。从事后
24、分层得到估计量的方差的估计值来看,它的方差不一定比简单随机抽样的要小,而且从事后分层得到的样本是利用简单随机抽样的方法得到的,只是在计算估计量和估计量的方差时是按照分层随机抽样来处理,而且事后分层要求层权是已知的,但是当层权未知从而利用样本来估计层权时,就会产生偏差,事后分层不见得比简单随机抽样产生更精确的结果。(2)事后分层比按比例分配产生更精确的结果,这个说法是错误的。从事后分层得到的估计量的方差的估计值可以看出,它的第一项就是按照比例分层抽样得到的估计量方差的估计值,公式中的第二项表示的是按事后分层时各层样本量与按照比例分层时各层样本量发生偏差所引起的方差的增量。(3)事后分层的最优分配
25、产生更精确的结果,这种说法是错误的。事后分层在样本量足够大的条件下是与比例分层相当的,但是在一般条件下,事后分层的精度仍然低于比例分层的,那么事后分层的精度也会高于最优分配的精度。(4)在抽样时不能得到分层变量,这个说法是正确的。事后分层在抽样时,是利用简单随机抽样的方法,在抽样时不涉及按照变量进行分层,至于按变量进行分层,是在抽样完成后,然后根据具体的变量来对样本进行分层。(5)它的估计量的方差与真正按照比例分层随机抽样的方差差不多,只有在样本量足够大的条件下才成立。在样本量足够大的条件下,从事后分层的方差的计算公式可以看出,它的第二项会趋于 0,这时事后分层的估计量的方差和分层随机抽样的方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽样技术 抽样 技术 第四 习题 答案 打印 修改
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。