特殊平行四边形练习题(矩形-菱形-正方形).doc
《特殊平行四边形练习题(矩形-菱形-正方形).doc》由会员分享,可在线阅读,更多相关《特殊平行四边形练习题(矩形-菱形-正方形).doc(5页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 特殊平行四边形练习题(矩形,菱形,正方形) 矩形的习题精选 一、性质 1、下列性质中,矩形具有而平行四边形不一定具有的是( ) A、对边相等 B、对角相等 C、对角线相等 D、对边平行 2.在矩形ABCD中,∠AOD=130°,则∠ACB=__ _ 3.已知矩形的一条对角线长是8cm,两条对角线的一个交角为60°,则矩形的周长为______ 4.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm, 对角线是13cm,那么矩形的周长是____________ 5.如图所示,矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为_____ 6、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___ 7、已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC= 。 8、如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F. 求证:BE=CF. 9.如图,△ABC中,∠ACB=900,点D、E分别为AC、AB的中点,点F在BC延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形; 10.已知:如图,在△ABC中,∠BAC≠90° ∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。试说明:DC=2AB. 11、在△ABC中,∠C=90O,AC=BC,AD=BD,PE⊥AC于点E, PF⊥BC于点F。求证:DE=DF 二、判定 1、下列检查一个门框是否为矩形的方法中正确的是( ) A.测量两条对角线,是否相等 B.测量两条对角线,是否互相平分 C.用曲尺测量门框的三个角,是否都是直角 D.用曲尺测量对角线,是否互相垂直 2、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形 3、在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形 4、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P。求证:四边形ABCD为矩形 5、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形. 6、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F, (1)求证:OE=OF; (2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。 菱形的习题精选 一、性质 1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件 ,使得四边形ABCD是菱形。小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是( ) A、小明、小亮都正确 B、小明正确,小亮错误 C、小明错误,小亮正确 D、小明、小亮都错误 2.下面性质中菱形有而矩形没有的是( ) (A)邻角互补(B)内角和为360° (C)对角线相等(D)对角线互相垂直 3.如图,已知四边形ABCD是平行四边形,下列结论不正确的是( ) A. 当AB=BC时,它是菱形; B. 当AC⊥BD时,它是菱形; C. 当∠ABC=90°时,它是矩形; D. 当AC=BD时,它是菱形。 4.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm. 5.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为______ cm2。 6 .已知:菱形的周长为40cm,两条对角线长的比是3:4。求两对角线长分别是 。 7、已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 . 8、如图,P为菱形ABCD的对角线上 一 点,PE⊥AB于点E,PF⊥AD于点 F,PF=3cm,则P点到AB的距离是_____ cm 13、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_______. 9.已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数。 10、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。 求(1)∠ABC的度数; (2)对角线AC、BD的长; (3)菱形ABCD的面积。 11、已知:如图,AD平分∠BAC,DE∥AC交AB于E, DF∥AB交AC于F. 求证:四边形AEDF是菱形; 12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。证明:不论E、F怎样移动,△BEF总是正三角形。 二、判定 1、□ABCD的对角线AC与BD相交于点O, (1)若AB=AD,则□ABCD是 形; (2)若AC=BD,则□ABCD是 形; (3)若∠ABC是直角,则□ABCD是 形; (4)若∠BAO=∠DAO,则□ABCD是 形。 2、下列条件中,不能判定四边形ABCD为菱形的是( ). A、AC⊥BD ,AC与BD互相平分 B、AB=BC=CD=DA C、AB=BC,AD=CD,且AC⊥BD D、AB=CD,AD=BC,AC⊥BD 3、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。 4、如图,在已知平行四边形ABCD中,AE平分∠BAD,与BC相交于点E,EF//AB,与AD相交于点F.求证:四边形ABEF是菱形. 5、 如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,四边形AEFG是菱形吗? 6、如图,已知在□ABCD中,AD=2AB,E、F在直线AB上,且AE=AB=BF,说明CE⊥DF. 正方形练习题 1. _____________的矩形叫做正方形。 2.正方形具有_________、___________、____________的一切性质。 3.如图,四边形ABCD是正方形,两条对角线相交于点O,OA=2, 则∠AOB=_____,∠OAB=_____,BD =______,AB=______. 4.第三题图中等腰三角形的个数是( )A.4个 B.5个 C.6个 D.8个 5.判断。(1)正方形一定是矩形。( )(2)正方形一定是菱形。( )(3)菱形一定是正方形。( )(4)矩形一定是正方形。( )(5)正方形、矩形、菱形都是平行四边形。( ) 自主学习 1.在下列性质中,平行四边形具有的是__________,矩形具有的是_________,菱形具有的是__________,正方形具有的是____________。 1.四边都相等;2.对角线互相平分;3.对角线相等;4.对角线互相垂直;5.四个角都是直角; 6.每条对角线平分一组对角;7.对边相等且平行;8.有两条对称轴。 2.正方形两条对角线的和为8cm,它的面积为____________. 3.在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到_____________ 4.如图,点E、F在正方形ABCD的边BC、CD上,BE=CF. (1)AE与BF相等吗?为什么?(2)AE与BF是否垂直?说明你的理由。 5.如图,正方形ABCD中对角线AC、BD相交于O,E为AC上一点,AG⊥EB交EB于G,AG交BD于F。 (1) 说明OE=OF的道理; (2) 在(1)中,若E为AC延长线上,AG⊥EB交EB的延长线于G,AG、BD的延长线交于F,其他条件不变,如图2,则结论:“OE=OF”还成立吗?请说明理由。 6.如图,在正方形ABCD中,取AD、CD边的中点E、F,连接CE、BF交于点G,连接AG。试判断AG与AB是否相等,并说明道理。 Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊 平行四边形 练习题 矩形 菱形 正方形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文