心理与教育统计学第4章差异量数.ppt
《心理与教育统计学第4章差异量数.ppt》由会员分享,可在线阅读,更多相关《心理与教育统计学第4章差异量数.ppt(75页珍藏版)》请在咨信网上搜索。
心理与教育统计学心理与教育统计学复习专题:复习专题:平均增加率与几何平均数平均增加率与几何平均数平均增加量与算术平均数平均增加量与算术平均数一列数据分别为一列数据分别为X1,X2,X3Xn,按一定的比例关系变化,则:按一定的比例关系变化,则:增加率的定义:增加率的定义:则:则:由于由于所以所以一列数据分别为一列数据分别为X1,X2,X3Xn,按一定数量增加,则:按一定数量增加,则:平均增加量:平均增加量:如果数据按比例增加,适如果数据按比例增加,适合求平均增加率;合求平均增加率;如果数据按一定数量增加,如果数据按一定数量增加,适合求平均增加量。适合求平均增加量。第第4章章 差异量数差异量数4.1 全距与百分位数全距与百分位数4.2 平均差、方差与标准差平均差、方差与标准差4.3 标准差的应用标准差的应用4.4 差异量数的选用差异量数的选用差异量数是对一组数据的变异性,即差异量数是对一组数据的变异性,即离中趋势特点进行度量和描述的统计离中趋势特点进行度量和描述的统计量,也称为离散量数(量,也称为离散量数(measures of dispersion)差异量越大,表明数据越分散、不集差异量越大,表明数据越分散、不集中;差异量越小,表明数据越集中,中;差异量越小,表明数据越集中,变动范围越小。变动范围越小。4.1 全距与百分位数全距与百分位数4.1.1 全距全距全距(全距(range)又称为两极差,用符号)又称为两极差,用符号R表示。表示。用最大值(用最大值(maximum)减去最小值减去最小值(minimum)得到全距。得到全距。(4.1)全距的特点:全距的特点:全距是最粗糙的差异量数,只利用了数据全距是最粗糙的差异量数,只利用了数据中的极端值;中的极端值;容易受极端值的影响;容易受极端值的影响;全距的应用:全距的应用:主要用于对数据作预备性检查,了解数据主要用于对数据作预备性检查,了解数据的大概分布范围;的大概分布范围;确定统计分组,编制次数分布表。确定统计分组,编制次数分布表。4.1.2 百分位数百分位数百分位数又称为百分位点,指两量尺百分位数又称为百分位点,指两量尺上的一个点,在此点以下,包括数据上的一个点,在此点以下,包括数据分布中全部数据个数的一定百分比。分布中全部数据个数的一定百分比。P百分位数将所有数据分为两部分,小百分位数将所有数据分为两部分,小于该数值的个数与总的个数的比值为于该数值的个数与总的个数的比值为P%。(1)根据原始数据计算百分位数根据原始数据计算百分位数12345678910P50即中数,位于第即中数,位于第5号数据和号数据和6号数号数据之间。据之间。P10位于第位于第1号数据和第号数据和第2号数据之间号数据之间23557912151516数值:数值:次序:次序:P50P10参考文献:虞仁和参考文献:虞仁和,胡国清胡国清,孙振球孙振球,&黄正南黄正南.(2010).关于百分位关于百分位数直接计算法的进一步探讨数直接计算法的进一步探讨.中国卫生统计中国卫生统计,27(3),307-308.n 表示数据的个数表示数据的个数;P 表示百分位数表示百分位数;j 表示整数部分表示整数部分;g 表示小数部分表示小数部分SPSS计算百分位数的方法:计算百分位数的方法:求累加次数:求累加次数:Xj表示第表示第j个数据值个数据值;求百分位数:求百分位数:(4.2)(4.3)1234567891023557912151516数值:数值:次序:次序:P10求求P10:j=1;g=0.1成绩成绩频数频数f累积频数累积频数95258903568565380747758407011326592160512554750234511合计合计5876543215/7=0.71精确组限79.584.49(2)采用次数分布表计算百分位数采用次数分布表计算百分位数(P80百分位数)百分位数)580.8=46.446.4-40=6.46.40.71=4.544.54+79.5=84.0484.5083.7983.0782.3681.6480.9380.2179.5084.04采用次数分布表计算百分位数采用次数分布表计算百分位数Pp为所求的第为所求的第P个百分位数;个百分位数;Lb为百分数所在组的精确下限;为百分数所在组的精确下限;fp为百分数所在组的次数;为百分数所在组的次数;Fp为小于为小于Lb的各组次数的和;的各组次数的和;N为总次数;为总次数;i为组距。为组距。(4.4)4.1.3 百分位差百分位差由于全距表示一组数据的离散程度时,由于全距表示一组数据的离散程度时,受极端数据的影响。受极端数据的影响。可用百分位差表示离散程度,百分位可用百分位差表示离散程度,百分位差是指两个百分位数之差。差是指两个百分位数之差。如:如:P P90P P10,P93 P P7。百分位差不能很好地反应中间数据的百分位差不能很好地反应中间数据的分布情况,常作为辅助差异量数分布情况,常作为辅助差异量数成绩成绩频数频数f累加频数累加频数95258903568565380747758407011326592160512554750234511合计合计58用次数分布表计算百分位差用次数分布表计算百分位差(P90P10)首先计算首先计算P10和和P90对对应的累加次数应的累加次数5810/100=5.805890/100=52.204.1.4 百分等级百分等级某一数值在一组数据中所处的百分位置,某一数值在一组数据中所处的百分位置,称为该数值的百分等级(称为该数值的百分等级(percentile rank)符号为符号为PRPR 百分等级;百分等级;X 给定的原始分数。给定的原始分数。(4.5)成绩成绩频数频数f累加频数累加频数95258903568565380747758407011326592160512554750234511合计合计58求求73对应的百分等级对应的百分等级利用累加次数分布图求百分等级和百分位数利用累加次数分布图求百分等级和百分位数4.1.5 四分位差四分位差四分位差四分位差(quartile deviation),指在一个,指在一个次数分布中,中间次数分布中,中间50%的次数的距离的一的次数的距离的一半。半。通常用通常用Q来表示。来表示。第一四分位:第一四分位:Q1P25第二四分位:第二四分位:Q2P50(中数)(中数)第三四分位:第三四分位:Q3P75四分位差:四分位差:其中:其中:(4.6)成绩成绩频数频数f累加频数累加频数95258903568565380747758407011326592160512554750234511合计合计58用次数分布表计算四分位差用次数分布表计算四分位差 首先计算首先计算P25和和P75对对应的累加次数。应的累加次数。5825/100=14.55875/100=43.525%25%25%25%Q1Q2Q325%25%25%25%Q1Q2Q3四分位差与四分位差与Q1、Q2和和Q3之间的关系之间的关系优点:优点:四分位差通常与中数联系起来应用。与全四分位差通常与中数联系起来应用。与全距相比,用百分位差表述数据的离散情况距相比,用百分位差表述数据的离散情况稍微好一些。稍微好一些。缺点:缺点:没有把全部数据考虑在内,其稳定性会差没有把全部数据考虑在内,其稳定性会差一些。一些。不适合代数运算不适合代数运算反应不够灵敏反应不够灵敏百分位差的应用百分位差的应用百分位差可以有效地避免极端数据的影响,这种百分位差可以有效地避免极端数据的影响,这种思想常常应用于日常生活中。思想常常应用于日常生活中。例如,在跳水比赛中,有例如,在跳水比赛中,有7位裁判员,他们会一起位裁判员,他们会一起对跳水运动员的表现进行打分。虽然裁判本着客对跳水运动员的表现进行打分。虽然裁判本着客观公正的标准去对待每一位运动员,但也难免存观公正的标准去对待每一位运动员,但也难免存在主观判断上偏颇。为了避免主观因素给运动员在主观判断上偏颇。为了避免主观因素给运动员带来的不公正性,比赛规定:从带来的不公正性,比赛规定:从7名裁判员的分数名裁判员的分数中先舍去一个最高分和一个最低分,余下中先舍去一个最高分和一个最低分,余下5名裁名裁判员的分数相加后,再乘以运动员所跳动作的难判员的分数相加后,再乘以运动员所跳动作的难度系数,便得出该动作的实得分。度系数,便得出该动作的实得分。谢谢!谢谢!4.2 平均差、方差与标准差平均差、方差与标准差4.2.1 平均差平均差平均差(平均差(average deviation)或或mean deviation)原始数据与平均数原始数据与平均数绝对离差的平均值。绝对离差的平均值。用符号用符号A.D.或或M.D.表示表示(1)原始数据计算公式:(4.7a)式中:式中:A.D.平均差;平均差;Xi数据值;数据值;平均值;平均值;xi 离均差。离均差。5名被试的错觉实验数据如下,求其平均差。名被试的错觉实验数据如下,求其平均差。被试被试12345错觉量错觉量(ms)1618202217解:n=5,(2)分组数据计算公式:(4.7b)式中:式中:f各组次数;各组次数;XC各组的组中值;各组的组中值;xc 各组中值与平均数的差。各组中值与平均数的差。分组数据计算平均差分组数据计算平均差(1)计算平均值)计算平均值(2)计算平均差)计算平均差4.2.2 方差与标准差方差与标准差方差(方差(variance)也称变异数、均方。离均)也称变异数、均方。离均差平方后的平均数,是每个数据与该组数据差平方后的平均数,是每个数据与该组数据平均数之差乘方后的均值。平均数之差乘方后的均值。样本统计量用符号样本统计量用符号 表示表示总体参数用符号总体参数用符号 表示表示标准差(标准差(standard deviation),方差),方差的平均根。的平均根。样本统计量用样本统计量用s或或SD表示;表示;总体参数用总体参数用 表示。表示。(4.8)总体方差:总体方差:总体标准差:总体标准差:式中:式中:总体方差;总体方差;总体标准差;总体标准差;总体平均值;总体平均值;N 总体的个数;总体的个数;(4.9)(1)总体方差与标准差公式)总体方差与标准差公式(4.10)样本方差:样本方差:样本标准差:样本标准差:式中:式中:样本方差;样本方差;样本标准差;样本标准差;样本平均值;样本平均值;N 样本的个数;样本的个数;(4.11)当样本数量非常大时,总体和样当样本数量非常大时,总体和样本方差的值差不多,本书并未区分总本方差的值差不多,本书并未区分总体和样本方差的不同。体和样本方差的不同。(2)样本方差与标准差公式)样本方差与标准差公式5名被试的错觉实验数据如下,求名被试的错觉实验数据如下,求其方差和标准差。其方差和标准差。被试被试12345错觉量错觉量(ms)1618202217(1)平均数:)平均数:(2)离均差的平方和:)离均差的平方和:(3)方差与标准差:)方差与标准差:由于:由于:所以:所以:(3)根据原始数据算方差:)根据原始数据算方差:用原始数据计算方差和标准差公式用原始数据计算方差和标准差公式方差:方差:标准差:标准差:原始数据的平方和;原始数据的平方和;原始数据总和的平方原始数据总和的平方;数据个数。数据个数。(4.12)(4.13)5名被试的错觉实验数据如下,求其方差名被试的错觉实验数据如下,求其方差和标准差。和标准差。被试被试12345错觉量错觉量(ms)1618202217(1)求原始数据的平均和:)求原始数据的平均和:(2)求原始数据的总和:)求原始数据的总和:方差:方差:标准差:标准差:(4 4)次数分布表计算方差)次数分布表计算方差(4.14)各分组区间的组中值;各分组区间的组中值;各组区间的次数各组区间的次数;总的次数;总的次数;总的平均值总的平均值已知平均值:已知平均值:(4.15)平均值未知:平均值未知:直接用次数与组中值计算方差与标准差:直接用次数与组中值计算方差与标准差:(4.16)(4.17)各分组区间的组中值;各分组区间的组中值;各组区间的次数各组区间的次数;总的次数;总的次数;52名学生数学成绩方差和标准差计算表成绩成绩组中值组中值Xc频数频数ff*Xcf*Xc2计计 算算959721941881890922184169288587326122707808254103362075778616474327072117925702465679603404016062531019220555742281299650522104540845471472209合计合计523749276763(5)总标准差的合成)总标准差的合成班级班级n ns s1 1424210310316162 2363611011012123 3505098981717例例4-4 在三个班级进行某项能力研在三个班级进行某项能力研究,三个班测查的平均分数和标准究,三个班测查的平均分数和标准差分别如下,求三个班的总标准差。差分别如下,求三个班的总标准差。平方和:平方和:总体方差:总体方差:总平方和总平方和=组间平方和组间平方和+组内平方和组内平方和(见(见P265)总方差;总方差;总标准差总标准差;各小组的标准差;各小组的标准差;各小组的数据个数;各小组的数据个数;总平均数;总平均数;各小组的平均数。各小组的平均数。(4.18)(4.19)班级班级n ns s1 1424210310316162 2363611011012123 3505098981717例例4-4 在三个班级进行某项能力研在三个班级进行某项能力研究,三个班测查的平均分数和标准究,三个班测查的平均分数和标准差分别如下,求三个班的总标准差。差分别如下,求三个班的总标准差。(1)计算)计算 、(2)计算)计算 、(3)计算)计算通知通知由于清明节放假,由于清明节放假,3月月31日(星期四)补日(星期四)补4月月4日(下周一)的心理统计课。日(下周一)的心理统计课。上课时间:上课时间:3月月31日,上午日,上午10:40。上课地点:心理学院上课地点:心理学院313认知实验室。认知实验室。复习复习差异量数差异量数全距全距百分位差百分位差平均差平均差方差方差标准差标准差百分位数百分位数百分等级百分等级四分位差四分位差原始数据原始数据分组数据分组数据原始数据原始数据分组数据分组数据先算平均数先算平均数不算平均数不算平均数方方差差的的合合成成原始数据原始数据分组数据分组数据百分位数百分位数平均差平均差方差方差先算平均数先算平均数不算平均数不算平均数(6 6)方差和标准差的性质)方差和标准差的性质(1)如果)如果则则(6 6)方差和标准差的性质)方差和标准差的性质(2)如果)如果则则(6 6)方差和标准差的性质)方差和标准差的性质(3)如果)如果则则令令则则由于由于所以所以(7 7)方差和标准差的意义)方差和标准差的意义(1)方差与标准差是表示一组数据离散程度方差与标准差是表示一组数据离散程度的最好指标,它们是统计描述和统计推断的最好指标,它们是统计描述和统计推断分析中最常用的差异量数。分析中最常用的差异量数。(2)标准差具备一个良好的差异量应具备的标准差具备一个良好的差异量应具备的条件,如:反应灵敏,有公式严密确定,条件,如:反应灵敏,有公式严密确定,适合代数运算等等。适合代数运算等等。(3)已知一组数据的平均数与标准差后,就已知一组数据的平均数与标准差后,就可以知道位于平均数上下各若干个标准差可以知道位于平均数上下各若干个标准差内的数据所占的百分比。内的数据所占的百分比。切比雪夫定理切比雪夫定理指出,对于任何一个数据指出,对于任何一个数据集合,至少有集合,至少有 的数据位于平均数的的数据位于平均数的h个标准差之内。个标准差之内。在正态分布中,平均数上下两个标准差在正态分布中,平均数上下两个标准差之内的数据占之内的数据占95.45%,三个标准差之内的数,三个标准差之内的数据占据占99.7%4.3 标准差的应用标准差的应用4.3.1 差异系数差异系数差异系数差异系数(cofficient of variation),又称为变,又称为变异系数、相对标准差等,是标准差与其算术异系数、相对标准差等,是标准差与其算术平均数的百分比,它是没有单位的相对差异平均数的百分比,它是没有单位的相对差异量数。量数。常以常以CV表示表示(4.20)某样本的标准差;某样本的标准差;该样本的平均数该样本的平均数;差异系数在心理与教育统计中常应用于:差异系数在心理与教育统计中常应用于:(1)同一团体不同观测值离散程度的比较;)同一团体不同观测值离散程度的比较;(2)不同团体进行同一观测,将他们的观)不同团体进行同一观测,将他们的观测值进行离散程度的比较。测值进行离散程度的比较。通过同一个测验,一年级(通过同一个测验,一年级(7岁)学生的平岁)学生的平均分数为均分数为60分,标准差为分,标准差为4.02分,五年级分,五年级(11岁)学生的平均分数为岁)学生的平均分数为80分,标准差分,标准差为为6.04分,问这两个年级的测验分数中哪一分,问这两个年级的测验分数中哪一个分散程度大?个分散程度大?在应用差异系数比较相对差异大小时,应在应用差异系数比较相对差异大小时,应该注意:该注意:(1)测量的数据为等距尺度。)测量的数据为等距尺度。(2)观测工具应该具备绝对零,这时应用)观测工具应该具备绝对零,这时应用差异系数进行比较分散程度效果才更好。差异系数进行比较分散程度效果才更好。(3)差异系数只能用于一般的相对差异量)差异系数只能用于一般的相对差异量的描述,尚无有效的假设检验方法。的描述,尚无有效的假设检验方法。标准分数(标准分数(standard score),又称),又称为基分数或为基分数或Z分数(分数(Z-score),是原始,是原始分数与平均值之差除以标准差所得的分数与平均值之差除以标准差所得的商。商。原始数据;原始数据;数据的平均数数据的平均数;标准差。标准差。(4.21)4.3.2 标准分数标准分数某班平均成绩为某班平均成绩为90分,标准差为分,标准差为3分,分,甲生得甲生得94.2分,乙生得分,乙生得89.1分,求甲、分,求甲、乙两个学生的乙两个学生的Z分数各是多少?分数各是多少?标准分数的性质标准分数的性质(1)Z分数无实际单位,是以平均数为参分数无实际单位,是以平均数为参照点,以标准差为单位的一个相对量。照点,以标准差为单位的一个相对量。Z分数乘以标准差即为原始分到平均分数乘以标准差即为原始分到平均值的距离。值的距离。(2)若原始分数小于平均数,其)若原始分数小于平均数,其Z分数为负分数为负数;大于平均数,其数;大于平均数,其Z分数为正数;等于平分数为正数;等于平均数,其均数,其Z分数为分数为0。所有原始分数的所有原始分数的Z分数的和为分数的和为0所有原始分数的所有原始分数的Z分数的平均数为分数的平均数为0(3)Z分数的标准差为分数的标准差为1150 156 162 168 174 180学生身高原始数据分布学生身高原始数据分布-1.76 -0.90 -0.04 0.82 1.68 2.54学生身高标准分数分布学生身高标准分数分布(4)若原始分数呈正态分布,则转换得到的若原始分数呈正态分布,则转换得到的所有所有Z分数为均值为分数为均值为0、标准差为、标准差为1的标准的标准正态分布。正态分布。标准分数转换对数据分布的基本形状标准分数转换对数据分布的基本形状没有影响没有影响标准分布的优点标准分布的优点(1)可比性。不同性质的原始分数,转化为)可比性。不同性质的原始分数,转化为标准分数后可以进行比较。标准分数后可以进行比较。(2)可加性。标准分数为抽象数值。)可加性。标准分数为抽象数值。(3)明确性。可以知道该分数在全体分数中)明确性。可以知道该分数在全体分数中的位置。的位置。(4)稳定性。)稳定性。假设有两套测量某种能力心理测验,同假设有两套测量某种能力心理测验,同一个人做,其原始分可能差异较大,但是一个人做,其原始分可能差异较大,但是标准分较为稳定。标准分较为稳定。标准分数的应用标准分数的应用(1)用于比较不同性质的观测值,在各自数)用于比较不同性质的观测值,在各自数据分布中的相对位置的高低。据分布中的相对位置的高低。(2)计算不同质的观测值的总和或平均值,)计算不同质的观测值的总和或平均值,以表示在团体中的相对位置。以表示在团体中的相对位置。(3)表示标准测验的分数,例如很多智力量)表示标准测验的分数,例如很多智力量表采用了标准分数表示智力表采用了标准分数表示智力(IQ)由于性质不同,由于性质不同,不同学科的原始不同学科的原始分数实际上是不分数实际上是不能求平均值的。能求平均值的。3.4 差异量数的选用差异量数的选用全距全距百分位差百分位差四分位差四分位差平均差平均差方差方差标准差标准差理解性(容易理解)理解性(容易理解)计算难度(易于计算)计算难度(易于计算)?稳定性(不受极端值影响)稳定性(不受极端值影响)?代表性(由全部数据获得)代表性(由全部数据获得)进一步的代数方法处理进一步的代数方法处理 大多数情况下,用方差和标准差,在一些大多数情况下,用方差和标准差,在一些特殊情况,如严重的偏态,快速了解数据的大特殊情况,如严重的偏态,快速了解数据的大致分布范围等用其他变异系数致分布范围等用其他变异系数(Q,R)。思考题:百分等级分数和思考题:百分等级分数和Z分数在表示数分数在表示数值的地位时有何区别?值的地位时有何区别?谢谢!谢谢!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 心理 教育 统计学 差异
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文