线面垂直与面面垂直垂直练习题.doc
《线面垂直与面面垂直垂直练习题.doc》由会员分享,可在线阅读,更多相关《线面垂直与面面垂直垂直练习题.doc(6页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 2.3线面垂直和面面垂直 线面垂直专题练习 一、定理填空: 1.直线和平面垂直 如果一条直线和 ,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理 线面垂直判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理1:如果两条平行线中的一条垂直于一个平面,那么 判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么 . 线面垂直性质定理: 垂直于同一个平面的两条直线互相平行. 性质定理1:垂直于同一条直线的两个平面互相平行。 二、精选习题: 1.设M表示平面,a、b表示直线,给出下列四个命题: ① ② ③b∥M ④b⊥M. 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有 ( ) 第3题图 A.DP⊥平面PEF B.DM⊥平面PEF C.PM⊥平面DEF D.PF⊥平面DEF 3.设a、b是异面直线,下列命题正确的是 ( ) A.过不在a、b上的一点P一定可以作一条直线和a、b都相交 B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直 C.过a一定可以作一个平面与b垂直 D.过a一定可以作一个平面与b平行 4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有 ( ) A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ 5.有三个命题: ①垂直于同一个平面的两条直线平行; ②过平面α的一条斜线l有且仅有一个平面与α垂直; ③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直 其中正确命题的个数为 ( )A.0 B.1 C.2 D.3 6.设l、m为直线,α为平面,且l⊥α,给出下列命题 ① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α, 其中真命题的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④ 7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高. 求证:VC⊥AB; 8.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点. (1)求证:MN∥平面PAD. (2)求证:MN⊥CD. (3)若∠PDA=45°,求证:MN⊥平面PCD. 9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,求证:AB1⊥A1M. 10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P. (1)求证:NP⊥平面ABCD. (2)求平面PNC与平面CC′D′D所成的角. 11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面. 解:已知a∥b,a⊥α.求证:b⊥α. 12. 已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC. 13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角. 14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值. 15.如图11(1),在直四棱柱ABCD—A1B1C1D1中, 已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC. (1)求证:D1C⊥AC1; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD, 并说明理由. 16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点, O为底面ABCD的中心. 求证:A1O⊥平面GBD. 17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点. 求证:(1)AB⊥MN; (2)MN的长是定值. 18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中, AC=3,AB=5,BC=4,AA1=4,点D是AB的中点. (1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1. 面面垂直专题练习 一、定理填空 面面垂直的判定定理: 面面垂直的性质定理: 二、精选习题 1、正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角等于____________ 2、三棱锥的三条侧棱相等,则点P在平面ABC上的射影是△ABC的____心. 3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________ 4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________ 5、已知是直二面角,,设直线AB与成角,AB=2,B到A在上的射影N的距离为,则AB与所成角为______________. 6、在直二面角棱AB上取一点P,过P分别在平面内作与棱成 45°角的斜线PC、PD,则∠CPD的大小是_____________ 7、正四面体中相邻两侧面所成的二面角的余弦值为___________________. 8. 如图,在正方体ABCD-A1B1C1D1 中. 求证:平面ACD1 ⊥ 平面BB1D1D 10、如图,三棱锥中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC. 11、如图,三棱锥中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例. Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 垂直 面面 练习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文