(试题附答案)高中数学第五章三角函数典型例题.pdf
《(试题附答案)高中数学第五章三角函数典型例题.pdf》由会员分享,可在线阅读,更多相关《(试题附答案)高中数学第五章三角函数典型例题.pdf(13页珍藏版)》请在咨信网上搜索。
1、(名师选题名师选题)(精选试题附答案)高中数学第五章三角函数典型例题(精选试题附答案)高中数学第五章三角函数典型例题 单选题 1、若函数()=sin(0),在区间0,3上单调递增,在区间3,2上单调递减,则=()A1B32C2D3 答案:B 分析:根据(3)=1以及周期性求得.依题意函数()=sin(0),在区间0,3上单调递增,在区间3,2上单调递减,则(3)=3=12=3,即3=2+2,0 3,解得=32.故选:B 2、函数()=sin cos(+6)的值域为()A-2,2B3,3 C-1,1D32,32 答案:B 分析:将()=sin cos(+6)展开重新整理得到3sin(6),求出值
2、域即可 解析:f(x)=sinx-cos(+6)=sinx-32cosx+12sinx=32sinx-32cosx=3sin(6),所以函数f(x)的值域为3,3 故选:B 3、若函数()=sin(3)(0 40)的图象经过点(16,1),则()的最小正周期为()A211B29C27D25 答案:A 分析:(16)=1,据此求出 的表达式,再根据 的范围求得 的值即可求最小正周期.依题意可得(16)=1,则63=2+2(),得=(12 1)().因为0 0),若对于任意实数,()在区间4,34上至少有 2 个零点,至多有3 个零点,则的取值范围是()A83,163)B4,163)C4,203)
3、D83,203)答案:B 分析:=+,只需要研究sin=12的根的情况,借助于=sin和=12的图像,根据交点情况,列不等式组,解出的取值范围.令()=0,则sin(+)=12 令=+,则sin=12 则问题转化为=sin在区间4+,34+上至少有两个,至少有三个t,使得sin=12,求的取值范围.作出=sin和=12的图像,观察交点个数,可知使得sin=12的最短区间长度为 2,最长长度为2+23,由题意列不等式的:2 (34+)(4+)2+23 解得:4 163.故选:B 小提示:研究y=Asin(x+)+B的性质通常用换元法(令=+),转化为研究=sin的图像和性质较为方便.8、已知 (
4、0,),且3cos2 8cos=5,则sin=()A53B23 C13D59 答案:A 分析:用二倍角的余弦公式,将已知方程转化为关于cos的一元二次方程,求解得出cos,再用同角间的三角函数关系,即可得出结论.3cos2 8cos=5,得6cos2 8cos 8=0,即3cos2 4cos 4=0,解得cos=23或cos=2(舍去),又 (0,),sin=1 cos2=53.故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.9、将函数()=2cos的图象先向右平移(0 0)倍,纵坐标不变,得到函数()的图象,若对()满足|
5、(1)(2)|=4,有|1 2|min=4恒成立,且()在区间(6,3)上单调递减,则的取值范围是()A12,3B3,2 C(3,23D3,23 答案:D 分析:可得()=2cos(),根据题意可求出最小正周期,得出,求出()的单调递减区间,根据包含关系可求出.由题可得()=2cos(),若满足|(1)(2)|=4,则1和2必然一个极大值点,一个极小值点,又|1 2|min=4,则2=4,即=2,所以=2=4,令2 4 2+,可得2+4 2+4+4,即()的单调递减区间为2+4,2+4+4,,因为()在区间(6,3)上单调递减,所以(6,3)2+4,2+4+4,,则2+462+4+43,解得2
6、+3 2+23,,因为0|cos|,故tan=43,故选:C 填空题 11、已知一个扇形的面积为10,半径为5,则它的圆心角为_弧度 答案:45#0.8 分析:利用扇形的面积公式列方程即可求解.设扇形的圆心角为,扇形的面积=122即10=12 52,解得=45,所以扇形的圆心角为45弧度,所以答案是:45.12、如果角是第三象限角,则点(tan,sin)位于第_象限 答案:四 分析:由角是第三象限角,可判断出tan 0,sin 0,sin 0,所以点(tan,sin)位于第四象限,所以答案是:四 13、已知()=2sin(2+3),若1,2,30,32,使得(1)=(2)=(3),若1+2+3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试题 答案 高中数学 第五 三角函数 典型 例题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。