专题二相似三角形的存在性问题解题策略.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 相似 三角形 存在 问题 解题 策略
- 资源描述:
-
资深教育 Senior Education 与梦想一起飞翔 ,您最值得信赖的个性化品牌辅导机构 课 时 教 案 授 课 题 目 专题二 相似三角形的存在性问题解题策略 授 课 日 期 2015年3月8日 教师 柳 娜 授 课 学 时 1 时 00 分 学生 课 型 复习课 学科组长 柳 娜 师生活动 一、要点归纳 相似三角形的存在性问题是苏州中考数学的热点问题. 解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 二、课前热身 △ABC中,点D、E分别在AB、AC边上,如果△ADE与△ABC相似,请确定点E的位置. 三、例题讲解 1.如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒). (1)求AD的长; (2)点F、E在运动过程中,如果△CEF与△BDC相似,求线段BF的长. 图1 备用图 2.如图1,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),交y轴于点C.已知B(8,0),tan∠ABC=0.5,△ABC的面积为8. (1)求抛物线的解析式; (2)若动直线EF(EF//x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动.联结FP,设运动时间t秒.是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似.若存在,试求出t的值;若不存在,请说明理由. 图1 3.如图1,在平面直角坐标系xOy中,抛物线,经过点A(1,3),B(0,1). (1)求抛物线的表达式及其顶点坐标; (2)过点A作x轴的平行线交抛物线于另一点C. ①求△ABC的面积; ②在y轴上取一点P,使△ABP与△ABC相似,求满足条件的所有P点坐标. 图1 4.如图,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点. (1)求此抛物线的解析式; (2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由; 5.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2. (1)求直线AD和抛物线的解析式; (2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标. 图1 6.如图1,△ABC中,AB=5,AC=3,cosA=.D为射线BA上的点(点D不与点B重合),作DE//BC交射线CA于点E.. (1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由. 图1 备用图 备用图 专项训练: 1.直线分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点. (1) 写出点A、B、C、D的坐标; (2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标; (3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由. 图1 2.Rt△ABC在直角坐标系内的位置如图1所示,反比例函数在第一象限内的图像与BC边交于点D(4,m),与AB边交于点E(2,n),△BDE的面积为2. (1)求m与n的数量关系; (2)当tan∠A=时,求反比例函数的解析式和直线AB的表达式; (3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO与△EFP 相似,求点P的坐标. 图1 3.如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上. (1)求m、n; (2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似. 图1 4.如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点. (1)求此抛物线的解析式; (2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标. , 图1 5.如图1,△ABC中,AB=5,AC=3,cosA=.D为射线BA上的点(点D不与点B重合),作DE//BC交射线CA于点E.. (1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度; (3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由. 图1 备用图 备用图 6.如图1,在直角坐标系xOy中,设点A(0,t),点Q(t,b).平移二次函数的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B、C两点(∣OB∣<∣OC∣),连结A,B. (1)是否存在这样的抛物线F,使得?请你作出判断,并说明理由; (2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式. 图1 学科组长审核签字: 教师反馈 1、 学生接受程度: □完全能接受 □部分能接受 能总结当堂学习所得,或提出深层次的问题 能用自己的语言有条理地去解释、表达所学知识 在学习过程中有满足、成功与喜悦等体验,对后续学习更有信心 2、学生课堂表现: □很积极 □比较积极 □一般 主动与老师交流互动,彬彬有礼 善于多角度思考问题、能主动提出有价值的问题 3、 学生课堂练习: □很满意 □比较满意 □一般 独立阅读思考,练习作业,答问时积极发表见解 具有自己的思想或创意 4、学生上次完成作业情况:完成数量 %, 已完成部分的质量 □优秀 □良好 □合格 5、 补充说明: 教师签字: 学生反馈 1、教学态度 【 】 A.认真负责,一丝不苟 B. 较认真负责,能严格要求 C.有时马虎,要求不够严 D. 不负责任,要求不严 2、教学方法 【 】 教法灵活,注重启迪学生思维、师生互动、有活力,注重培养学生能力。 A.灵活、学生活动多 B. 较灵活、学生有活动 C. 不够灵活、学生活动少 D.教法呆板,学生只是被动地听老师讲 3、课后作业 【 】 A.作业量适当、检查及时 B、作业量较适当、不够及时 C.作业量多、但无针对性 4、作业批改 【 】 A.批改认真、及时、注意讲评 B.批改较认真及时、较注意讲评 C.批改不够认真、讲评不够 D.批改不认真、拖拉 5、教学效果 【 】 A.听得明白,新知识巩固率高,学习能力有明显提高 B.听得懂,新知识巩固率较高,学习能力有提高 C.多数能听懂,新知识巩固率不够高,对学习能力提高帮助不大 D.多数听不懂,新知识巩固率低,学习能力未得到提高 6、你有悄悄话想对某位老师说吗?如果有请你写下来,我们帮你转达。 学生签字: 家长意见或建议 家长签名: 第 7 页展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




专题二相似三角形的存在性问题解题策略.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2301984.html