-反比例函数的图像与性质专题.doc
《-反比例函数的图像与性质专题.doc》由会员分享,可在线阅读,更多相关《-反比例函数的图像与性质专题.doc(11页珍藏版)》请在咨信网上搜索。
洪翔中学反比例函数的图像与性质专题 宋文文 知识点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = ( k是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k ≠0、x≠0、y≠0; (2)判断一个函数是否是反比例函数,关键是看两个变量的乘积是否是一个常数. (3)解析式有三种常见的表达形式: (A)y = (k ≠ 0) , (B)xy = k(k ≠ 0) (C)y=kx-1(k≠0) 2、反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) 3、求函数解析式的方法: (1)待定系数法(只需一对对应值或图像上一个点的坐标即可求出); (2)根据实际意义列函数解析式 4、“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。 5、反比例函数(k≠0)中的比例系数k的几何意义。如图: 反比例函数 中比例系数k的绝对值的几何意义: 如图,过双曲线上任意一点P分别作x轴,y轴的垂线,M、N分别为垂足,则 若已知矩形的面积k的绝对值时,应当依据双曲线的位置确定k值的符号。 (二)反比例函数的图象和性质: 反比例函数 (k≠0) 形状 双曲线 图像 性质 1、x的取值范围是x≠0,y的取值范围是y≠0 2、增减性:当k>0时,双曲线的两支分别位于一、三象限,在每个象限内y值随x值的增大而减小; 3、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交 1、x的取值范围是x≠0,y的取值范围是y≠0 2、增减性:当k<0时,双曲线的两支分别位于二、四限,在每个象限内y值随x值的增大而增大 3、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交 对称性 反比例函数既是中心对称图形(对称中心为坐标原点),又是轴对称图形。 当k>0时,对称轴是直线y=x 当k<0时,对称轴是直线y=-x 一.选择题 y x O y x O y x O y x O 第2题图 1、矩形面积为4,它的长与宽之间的函数关系用图象大致可表示为( ) A. B. C. D. 2.关于反比例函数的图像,下列说法正确的是 ( ) A.必经过(1,1) B.两个分支分布在第二、四象限 C.两个分支关于x轴成轴对称 D.两个分支关于原点成中心对称 3.在反比例函数的图象的每一条曲线上,的增大而增大,则的值可以是 ( ) A. B.0 C.1 D.2 第5题图 4.在同一平面直角坐标系中,函数与函数的图象可能是 ( ) 5、如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是 ( ) A.1 B.2 C.3 D.4 二.填空题 6.过反比例函数 (k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果⊿ABC的面积为3.则k的值为 _____________. 7.若反比例函数的图象位于一、三象限内,正比例函数过二、四象限,则k的整数值是________. 8.如图,△AOB和△BCD都是等边三角形,点A、C在函数y= (x>0)的图象上,并且边OB、BD都在x轴正半轴上,若OA=4,则点C的横坐标为________. 第10题图 第8题图 . 第6题图 9.若点A(m,-2)在反比例函数的图像上,则当函数值y≥-2时,自变量x的取值范围是___________. 10.如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是________________。 三.解答题 11.如图,已知反比例函数的图像与一次函数y=kx+4的图像相交于P、Q两点,并且P点的纵坐标是6. (1)求这个一次函数的解析式; (2)求△POQ的面积. 12.如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,2)、B(m,﹣1)两点. (1)求直线和双曲线的解析式; (2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式; (3)观察图象,请直接写出不等式k1x+b<的解集. A. (﹣3,4) B. (﹣4,﹣3) C. (﹣3,﹣4) D. (4,3) 4、正比例函数y=kx和反比例函数(k是常数,且k≠0)在同一平面直角坐标系中的图象可能是 5、(2013沈阳)、在同一平面直角坐标系中,函数与函数的图象可能是( ) 6.(3分)(2013•内江)如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( ) 7、如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是B 第7题图 1、(2013桂林).函数的图象与函数的图象在第一象限内交于点B, 点C是函数在第一象限图象上的一个动点,当△OBC的 面积为3时,点C的横坐标是 . 3.如图,反比例函数的图象经过点P,则k= . 2) 反比例函数的图象如图4所示,点M是该函数图象上一点,MN⊥x轴,垂足为N.如果S△MON=2,这个反比例函数的解析式为______________ 4、(2013•三明)如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是 . 5、(2013自贡).如图,在函数的图象上有点、、……、、,点的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点、、……、、分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为、、……、,则=________,=________.(用含n的代数式表示) 6、(2013武汉).如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0), (0,2),C,D两点在反比例函数的图象上,则的值等于 . A x y O B (第7题图) 第15题图 O A C B 三、解答题 1、(2013•攀枝花)如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,2)、B(m,﹣1)两点. (1)求直线和双曲线的解析式; (2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式; (3)观察图象,请直接写出不等式k1x+b<的解集. 2.(10分)(2013•巴中)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE= (1)求反比例函数的解析式; (2)求△AOB的面积. 3、(2013大连)如图,在平面直角坐标系xoy中,一次函数y=ax+b的图象与反比例函数的图象相交于点A(m,1)、B(-1,n),与x轴相交于点C(2,0),且 。 (1)求该反比例函数和一次函数的解析式;(2)直接写出不等式的解集。 4、(2013成都)(本小题满分10分) 如图,一次函数的图像与反比例函数(为常数,且)的图像都经过点 (1)求点的坐标及反比例函数的表达式; (2)结合图像直接比较:当时,和的大小. 5、(10分)(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2. (1)求该反比例函数和一次函数的解析式; (2)求点B的坐标; (3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标) 6、、如图,函数与函数的图像相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为 O (第6题) A、2 B、4 C、6 D、8 7、(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为( ) A. ﹣3 B. ﹣6 C. ﹣ D. ﹣2 内 不 要 答 题 8、(2013广安). 已知反比例函数和一次函数. (1) 若一次函数与反比例函数的图像交于点P(2,m),求m和k的值. (2) 当k满足什么条件时,两函数的图像没有交点? 9、(6分)(2013•郴州)已知:如图,一次函数的图象与y轴交于C(0,3),且与反比例函数y=的图象在第一象限内交于A,B两点,其中A(1,a),求这个一次函数的解析式. 第 11 页 共 4 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 反比例 函数 图像 性质 专题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文