高等数学练习题(附答案)(2).doc
《高等数学练习题(附答案)(2).doc》由会员分享,可在线阅读,更多相关《高等数学练习题(附答案)(2).doc(27页珍藏版)》请在咨信网上搜索。
1、 高等数学专业 年级 学号 姓名 一、判断题. 将或填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量.( )3. 闭区间上的间断函数必无界.( )4. 单调函数的导函数也是单调函数.( )5. 若在点可导,则也在点可导.( )6. 若连续函数在点不可导,则曲线在点没有切线.( )7. 若在上可积,则在上连续.( )8. 若在()处的两个一阶偏导数存在,则函数在()处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数在区间内具有二阶导数,且 , 则为的一个极小值.二、填空题.(每题2分,共20分)
2、1. 设,则 .2. 若,则 .3. 设单调可微函数的反函数为, 则 .4. 设, 则 .5. 曲线在点切线的斜率为 .6. 设为可导函数,则 .7. 若则 .8. 在0,4上的最大值为 .9. 广义积分 .10. 设D为圆形区域 .三、计算题(每题5分,共40分)1. 计算.2. 求在(0,+)内的导数.3. 求不定积分.4. 计算定积分.5. 求函数的极值.6. 设平面区域D是由围成,计算.7. 计算由曲线围成的平面图形在第一象限的面积.8. 求微分方程的通解.四、证明题(每题10分,共20分)1. 证明: .2. 设在闭区间上连续,且证明:方程在区间内有且仅有一个实根.高等数学参考答案一
3、、判断题. 将或填入相应的括号内(每题2分,共20分)1. ;2. ;3.; 4. ;5.; 6. ;7. ;8. ;9. ;10.二、 填空题.(每题2分,共20分)1.; 2. 1; 3. 1/2; 4.; 5. 2/3 ; 6. 1 ; 7. ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 且 ,=0 由迫敛性定理知: =0 2.解:先求对数 3.解:原式= = =2 4.解:原式= = = = =4/5 5.解: 故 或 当 时, 且A= (0,0)为极大值点 且 当 时, , 无法判断 6.解:D= = = = = = 7.解:令,;则,
4、 8.解:令 ,知 由微分公式知: 四.证明题(每题10分,共20分)1.解:设 =0 令 即:原式成立。 2.解: 上连续且 0故方程在上至少有一个实根. 又 即 在区间上单调递增 在区间上有且仅有一个实根. 高等数学专业 学号 姓名 一、判断题(对的打,错的打;每题分,共分)1.在点处有定义是在点处连续的必要条件.2. 若在点不可导,则曲线在处一定没有切线.3. 若在上可积,在上不可积,则在上必不可积.4. 方程和在空间直角坐标系中分别表示三个坐标轴和一个点.5. 设是一阶线性非齐次微分方程的一个特解,是其所对应的齐次方程的通解,则为一阶线性微分方程的通解.二、填空题(每题分,共分)1.
5、设则 .2. 设,当 时,在点连续.3. 设,则 .4. 已知在处可导,且,则 . 5. 若,并且,则.6. 若在点左连续,且 ,则与大小比较为 7. 若,则;.8. 设,则.9. 设,则.10. 累次积分化为极坐标下的累次积分为 .三、计算题(前题每题分,后两题每题分,共分)1. ; 2. 设,求; 3. ;4. ; 5. 设, 求.6. 求由方程所确定的函数的微分.7. 设平面区域是由围成,计算. 8. 求方程在初始条件下的特解. 四、(分)已知在处有极值,试确定系数、,并求出所有的极大值与极小值.五、应用题(每题分,共分)1. 一艘轮船在航行中的燃料费和它的速度的立方成正比. 已知当速度
6、为时,燃料费为每小时元,而其它与速度无关的费用为每小时元. 问轮船的速度为多少时, 每航行所消耗的费用最小?2. 过点向曲线作切线,求:(1)切线与曲线所围成图形的面积;(2)图形绕轴旋转所得旋转体的体积. 六、证明题(分)设函数在上的二阶导数存在,且, . 证明在上单调增加.高等数学参考答案一、判断题 1.; 2.; 3. ; 4. ; 5.二、填空题1. 36 ; 2. ; 3. ; 4. ; 5. ; 6.;7. ; 8. ; 9. ; 10.三、计算题1. 原式 2. 3原式= 4设 则 原式= 5 6两边同时微分得: 即 故 (本题求出导数后,用解出结果也可)7 8原方程可化为 通解
7、为 代入通解得 故所求特解为: 四、解: 因为在处有极值,所以必为驻点故 又 解得: 于是 由 得 ,从而 , 在处有极小值 ,在处有极大值 五、1.解:设船速为,依题意每航行的耗费为 又 时, 故得, 所以有, 令 , 得驻点 由极值第一充分条件检验得是极小值点.由于在上该函数处处可导,且只有唯一的极值点,当它为极小值点时必为最小值点,所以求得船速为时,每航行的耗费最少,其值为(元) 2.解:(1)设切线与抛物线交点为,则切线的斜率为,又因为上的切线斜率满足,在上即有所以,即 又因为满足,解方程组 得 所以切线方程为 则所围成图形的面积为: (2)图形绕轴旋转所得旋转体的体积为: 六、证:
8、在上,对应用拉格朗日中值定理,则存在一点,使得 代入上式得 由假设知为增函数,又,则,于是,从而,故在内单调增加. 高等数学试卷专业 学号 姓名 一、填空题(每小题1分,共10分)1函数的定义域为_。 2函数 上点( , )处的切线方程是_。 3设在可导且,则 _。 4设曲线过,且其上任意点的切线斜率为,则该曲线的方程是_。 5_。 _。 7设,则_。 8累次积分化为极坐标下的累次积分为_。 9微分方程的阶数为_。 10设级数 发散,则级数 _。二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的( )内,(110每小题1分,1117每小题2分,共24分)1设函数 ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 练习题 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。