初二有关三角形证明的中考题.doc
《初二有关三角形证明的中考题.doc》由会员分享,可在线阅读,更多相关《初二有关三角形证明的中考题.doc(12页珍藏版)》请在咨信网上搜索。
1、第一章 三角形的证明测试卷(源于中考的试题)参考答案与试题解析一选择题(共9小题)1(2013郴州)如图,在RtACB中,ACB=90,A=25,D是AB上一点将RtABC沿CD折叠,使B点落在AC边上的B处,则ADB等于()A25B30C35D40解答:解:在RtACB中,ACB=90,A=25,B=9025=65,CDB由CDB反折而成,CBD=B=65,CBD是ABD的外角,ADB=CBDA=6525=40故选D2(2012潍坊)轮船从B处以每小时50海里的速度沿南偏东30方向匀速航行,在B处观测灯塔A位于南偏东75方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60方向上,则
2、C处与灯塔A的距离是()海里A25B25C50D25解答:解:根据题意,1=2=30,ACD=60,ACB=30+60=90,CBA=7530=45,ABC为等腰直角三角形,BC=500.5=25,AC=BC=25(海里)故选D3(2011贵阳)如图,ABC中,C=90,AC=3,B=30,点P是BC边上的动点,则AP长不可能是()A3.5B4.2C5.8D7解答:解:根据垂线段最短,可知AP的长不可小于3;ABC中,C=90,AC=3,B=30,AB=6,AP的长不能大于6 故选D4(2012铜仁地区)如图,在ABC中,ABC和ACB的平分线交于点E,过点E作MNBC交AB于M,交AC于N,
3、若BM+CN=9,则线段MN的长为()A6B7C8D9考点:等腰三角形的判定与性质;平行线的性质1518028分析:由ABC、ACB的平分线相交于点E,MBE=EBC,ECN=ECB,利用两直线平行,内错角相等,利用等量代换可MBE=MEB,NEC=ECN,然后即可求得结论解答:解:ABC、ACB的平分线相交于点E,MBE=EBC,ECN=ECB,MNBC,EBC=MEB,NEC=ECB, MBE=MEB,NEC=ECN,BM=ME,EN=CN,MN=ME+EN,即MN=BM+CNBM+CN=9MN=9, 故选D5(2011恩施州)如图,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,
4、ADG和AED的面积分别为50和39,则EDF的面积为()A11B5.5C7D3.5考点:角平分线的性质;全等三角形的判定与性质1518028专题:计算题;压轴题分析:作DM=DE交AC于M,作DNAC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求解答:解:作DM=DE交AC于M,作DNAC,DE=DG,DM=DE,DM=DG,AD是ABC的角平分线,DFAB,DF=DN,在RtDEF和RtDMN中,RtDEFRtDMN(HL),ADG和AED的面积分别为50和39,SMDG=SADGSADM=5039=11,SDNM=SDEF=SMDG=5.5故选B点评
5、:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求6(2012广州)在RtABC中,C=90,AC=9,BC=12,则点C到AB的距离是()ABCD解答:解:根据题意画出相应的图形,如图所示:在RtABC中,AC=9,BC=12,根据勾股定理得:AB=15,过C作CDAB,交AB于点D,又SABC=ACBC=ABCD,CD=,则点C到AB的距离是 故选A7(2007芜湖)如图,在ABC中ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A1B2C3D4解答:解:
6、在ABC中,ADBC,CEAB,AEH=ADB=90;EAH+AHE=90,DHC+BCH=90,EHA=DHC(对顶角相等),EAH=DCH(等量代换);在BCE和HAE中,AEHCEB(AAS);AE=CE;EH=EB=3,AE=4,CH=CEEH=AEEH=43=1 故选A8(2011泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()ABCD6解答:解:CEO是CEB翻折而成,BC=OC,BE=OE,B=COE=90,EOAC,O是矩形ABCD的中心,OE是AC的垂直平分线,AC=2BC=23=6,AE=CE,在RtA
7、BC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在RtAOE中,设OE=x,则AE=3x,AE2=AO2+OE2,即(3x)2=32+x2,解得x=,AE=EC=3=2故选A9(2012深圳)如图,已知:MON=30,点A1、A2、A3在射线ON上,点B1、B2、B3在射线OM上,A1B1A2、A2B2A3、A3B3A4均为等边三角形,若OA1=1,则A6B6A7的边长为()A6B12C32D64解答:解:A1B1A2是等边三角形,A1B1=A2B1,3=4=12=60,2=120,MON=30,1=18012030=30,又3=60,5=1806030=90,MON=1=
8、30,OA1=A1B1=1,A2B1=1,A2B2A3、A3B3A4是等边三角形,11=10=60,13=60,4=12=60,A1B1A2B2A3B3,B1A2B2A3,1=6=7=30,5=8=90,A2B2=2B1A2,B3A3=2B2A3,A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32故选:C二填空题(共8小题)10(2011怀化)如图,在ABC中,AB=AC,BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=4考点:勾股定理;等腰三角形的性质1518028分析:首先根据等腰三角形的性质:等腰三角形的三
9、线合一,求出DB=DC=CB,ADBC,再利用勾股定理求出AD的长解答:解:AB=AC,AD是BAC的角平分线,DB=DC=CB=3,ADBC,在RtABD中,AD2+BD2=AB2,AD=4,故答案为:4点评:此题主要考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出ADB是直角三角形11(2011衡阳)如图所示,在ABC中,B=90,AB=3,AC=5,将ABC折叠,使点C与点A重合,折痕为DE,则ABE的周长为7考点:翻折变换(折叠问题);勾股定理1518028专题:压轴题;探究型分析:先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 有关 三角形 证明 考题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。