2017年沈阳市中考数学试题含答案解析(Word版).doc
《2017年沈阳市中考数学试题含答案解析(Word版).doc》由会员分享,可在线阅读,更多相关《2017年沈阳市中考数学试题含答案解析(Word版).doc(18页珍藏版)》请在咨信网上搜索。
辽宁省沈阳市2017中考数学试题 考试时间120分钟 满分120分 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分) 1.7的相反数是( ) A. B. C. D.7 【答案】A. 【解析】 试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A. 考点:相反数. 2. 如图所示的几何体的左视图是( ) A. B. C. D. 【答案】D. 【解析】 试题分析:这个几何体从左面看到的图形是两个竖排的正方形,故选D. 考点:简单几何体的三视图. 3. “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。将数据830万用科学记数法可以表示为 ( ) A. B. C. D. 【答案】B. 考点:科学记数法. 4. 如图,,的度数是( ) A. B. C. D. 【答案】C. 【解析】 试题分析:已知,根据平行线的性质可得再由邻补角的性质可得∠2=180°-∠3=130°,故选C. 考点:平行线的性质. 5. 点在反比例函数的图象上,则的值是( ) A.10 B.5 C. D. 【答案】D. 【解析】 试题分析:已知点在反比例函数的图象上,可得k=-2×5=-10,故选D. 考点:反比例函数图象上点的特征. 6. 在平面直角坐标系中,点,点关于轴对称,点的坐标是,则点的坐标是( ) A. B. C. D. 【答案】A. 【解析】 试题分析:关于y轴对称点的坐标的特点是横坐标互为相反数,纵坐标不变,由此可得点B的坐标为(-2,-8),故选A. 考点:关于y轴对称点的坐标的特点. 7. 下列运算正确的是( ) A. B. C. D. 【答案】C. 考点:整式的计算. 8. 下利事件中,是必然事件的是( ) A.将油滴在水中,油会浮在水面上 B.车辆随机到达一个路口,遇到红灯 C.如果,那么 D.掷一枚质地均匀的硬币,一定正面向上 【答案】A. 考点:必然事件;随机事件. 9. 在平面直角坐标系中,一次函数的图象是( ) A. B. C. D. 【答案】B. 【解析】 试题分析:一次函数的图象过(1,0)、(0,-1)两个点,观察图象可得,只有选项B符合要求,故选B. 考点:一次函数的图象. 10. 正方形内接与,正六边形的周长是12,则的半径是( ) A. B.2 C. D. 【答案】B. 【解析】 试题分析:已知正六边形的周长是12,可得BC=2,连接OB、OC,可得∠BOC=,所以△BOC为等边三角形,所以OB=BC=2,即的半径是2,故选B. 考点:正多边形和圆. 二、填空题(每小题3分,共18分) 11. 因式分解 . 【答案】3(3a+1). 【解析】 试题分析:直接提公因式a即可,即原式=3(3a+1). 考点:因式分解. 12. 一组数的中位数是 . 【答案】5. 【解析】 试题分析:这组数据的中位数为. 考点:中位数. 13. . 【答案】. 【解析】 试题分析:原式= . 考点:分式的运算. 14. 甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是,则三人中成绩最稳定的是 .(填“甲”或“乙”或“丙”) 【答案】丙. 【解析】 试题分析:平均数相同,方差越小,这组数据越稳定,根据题意可得三人中成绩最稳定的是丙. 考点:方差. 15. 某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出 400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元时,才能在半月内获得最大利润. 【答案】35. 考点:二次函数的应用. 16. 如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是 . 【答案】. 【解析】 试题分析:如图,过点C作MNBG,分别交BG、EF于点M、N,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt△BCG中,根据勾股定理求得CG=4,再由,即可求得CM= ,在Rt△BCM中,根据勾股定理求得BM=,根据已知条件和辅助线作法易知四边形BENMW为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=,所以CN=MN-CM=3-=,在Rt△ECN中,根据勾股定理求得EC=. 考点:四边形与旋转的综合题. 三、解答题(第17题6分,第18、19小题各8分,共22分) 17. 计算 【答案】. 【解析】 试题分析:根据绝对值的性质、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质分别计算各项后合并即可. 试题解析: 原式=. 考点:实数的运算. 18. 如图,在菱形中,过点做于点,做于点,连接, 求证:(1); (2) 【答案】详见解析. 【解析】 试题分析:(1)根据菱形的性质可得AD=CD,,再由,,可得,根据AAS即可判定;(2)已知菱形,根据菱形的性质可得AB=CB,再由,根据全等三角形的性质可得AE=CF,所以BE=BF,根据等腰三角形的性质即可得. 试题解析: (1) ∵菱形, ∴AD=CD, ∵, ∴ ∴ (2) ∵菱形, ∴AB=CB ∵ ∴AE=CF ∴BE=BF ∴ 考点:全等三角形的判定及性质;菱形的性质. 19. 把3、5、6三个数字分别写在三张完全不同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字、放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率. 【答案】. 【解析】 试题分析:根据题意列表(画出树状图),然后由表格(或树状图)求得所有等可能的结果与两次抽取的卡片上的数字都是奇数的情况,再利用概率公式求解即可求得答案. 试题解析: 列表得: 或 (或画树形图) 总共出现的等可能的结果有9种,其中两次抽取的卡片上的数字都是奇数的结果有4种,所以两次抽取的卡片上的数字都是奇数的概率为. 考点:用列表法(或树状图法)求概率. 四、(每题8分,共16分) 20. 某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他。随机调查了该校名学生(每名学生必须且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图: 根据统计图提供的信息,解答下列问题: (1) , ; (2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度. (3)请根据以上信息直接在答题卡中补全条形统计图; (4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 【答案】(1)50、30;(2)72;(3)详见解析;(4)180. 试题解析: (1)50、30; (2)72; (3)如图所示: (4)600×30%=180(名) 答:估计该校有180名学生最喜欢科普类图书. 考点:统计图. 21. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品? 【答案】小明至少答对18道题才能获得奖品. 【解析】 试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可. 试题解析: 设小明答对x道题,根据题意得, 6x-2(25-x)>90 解这个不等式得,, ∵x为非负整数 ∴x至少为18 答:小明至少答对18道题才能获得奖品. 考点:一元一次不等式的应用. 五、(本题10分) 22. 如图,在中,以为直径的交于点,过点做于点,延长交的延长线于点,且. (1)求证:是的切线; (2)若,的半径是3,求的长. 【答案】(1)详见解析;(2). 【解析】 试题分析:(1)连接OE,根据圆周角定理可得,因,即可得,即可判定,再由,可得,即可得,即,所以是的切线;(2)根据已知条件易证BA=BC,再求得BA=BC=6,在Rt△OEG中求得OG=5,在Rt△FGB中,求得BF=,即可得AF=AB-BF=. 试题解析: (1)连接OE, 则, ∵ ∴ ∴ ∵ ∴ ∴ ∴ 又∵OE是的半径 ∴是的切线; (2)∵,∵ ∴ ∴BA=BC 又的半径为3, ∴OE=OB=OC ∴BA=BC=2×3=6 在Rt△OEG中,sin∠EGC=,即 ∴OG=5 在Rt△FGB中,sin∠EGC=,即 ∴BF= ∴AF=AB-BF=6-=. 考点:圆的综合题. 六、(本题10分) 23. 如图,在平面直角坐标系中,四边形的顶点是坐标原点,点的坐标为,点的坐标为,点的坐标为,点分别为四边形边上的动点,动点从点开始,以每秒1个单位长度的速度沿路线向中点匀速运动,动点从点开始,以每秒两个单位长度的速度沿路线向终点匀速运动,点同时从点出发,当其中一点到达终点后,另一点也随之停止运动。设动点运动的时间秒(),的面积为. (1)填空:的长是 ,的长是 ; (2)当时,求的值; (3)当时,设点的纵坐标为,求与的函数关系式; (4)若,请直接写出此时的值. 【答案】(1)10,6;(2)S=6;(3)y=;(4)8或或. 【解析】 试题分析:由点的坐标为,点的坐标为,可得OA=6,OB=8,根据勾股定理即可求得AB=10;过点C作CMy轴于点M,由点的坐标为,点的坐标为,可得 BM=4,CM=2,再由勾股定理可求得BC=6;(2)过点C作CEx轴于点E,由点的坐标为,可得CE=4,OE=2,在Rt△CEO中,根据勾股定理可求得OC=6,当t=3时,点N与点C重合,OM=3,连接CM,可得NE=CE=4,所以,即S=6;(3)当3<t<6时,点N在线段BC上,BN=12-2t,过点N作NGy轴于点G,过点C作CFy轴于点F,可得F(0,4),所以OF=4,OB=8,再由∠BGN=∠BFC=90°,可判定NGCF,所以,即,解得BG=8-,即可得y =;(4)分①点M在线段OA上,N在线段OC上;②点M、点N都在线段AB上,且点M在点N的下方;③点M、点N都在线段AB上,且点M在点N的上方三种情况求t值即可. 试题解析: (1)10,6; (3)如图2,当3<t<6时,点N在线段BC上,BN=12-2t, 过点N作NGy轴于点G,过点C作CFy轴于点F,则F(0,4) ∵OF=4,OB=8, ∴BF=8-4=4 ∵∠BGN=∠BFC=90°, ∴NGCF ∴,即, 解得BG=8-, ∴y=OB-BG=8-(8-)= (4)8或或. 考点: 七、(本题12分) 24. 四边形是边长为4的正方形,点在边所在的直线上,连接,以为边,作正方形(点,点在直线的同侧),连接 (1)如图1,当点与点重合时,请直接写出的长; (2)如图2,当点在线段上时, ①求点到的距离 ②求的长 (3)若,请直接写出此时的长. 【答案】(1)BF=4;(2)①点到的距离为3;②BF=;(3)AE=2+或AE=1. 【解析】 试题分析:(1)过点F作FMBA, 交BA的延长线于点M,根据勾股定理求得AC=,又因点与点重合,可得△AFM为等腰直角三角形且AF=,再由勾股定理求得AM=FM=4,在Rt△BFM中,由勾股定理即可求得BF=4;(2)①过点F作FHAD交AD的延长线于点H,根据已知条件易证,根据全等三角形的性质可得FH=ED,又因AD=4,AE=1,所以ED=AD-AE=4-1=3,即可求得FH=3,即点到的距离为3;②延长FH交BC的延长线于点K,求得FK和BK的长,在Rt△BFK中,根据勾股定理即可求得BF的长;(3)分点E在线段AD的延长线上和点E在线段DA的延长线上两种情况求解即可. 试题解析: (1)BF=4; (2) 如图, ①过点F作FHAD交AD的延长线于点H, ∵四边形CEFG是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°, 又因四边形是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°, ∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°, ∴ ∴FH=ED ∵AD=4,AE=1, ∴ED=AD-AE=4-1=3, ∴FH=3, 即点到的距离为3. ②延长FH交BC的延长线于点K, ∴∠DHK=∠HDC=∠DCK =90°, ∴四边形CDHK为矩形, ∴HK=CD=4, ∴FK=FH+HK=3+4=7 ∵ ∴EH=CD=AD=4 ∴AE=DH=CK=1 ∴BK=BC+CK=4+1=5, 在Rt△BFK中,BF= (3)AE=2+或AE=1. 考点:四边形综合题. 八、(本题12分) 25. 如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点. (1)填空,的长是 ,的度数是 度 (2)如图2,当,连接 ①求证:四边形是平行四边形; ②判断点是否在抛物线的对称轴上,并说明理由; (3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长. 【答案】(1)8,30;(2)①详见解析;②点D在该抛物线的对称轴上,理由详见解析;(3)12 . 【解析】 试题分析:(1)根据抛物线的解析式求得点A的坐标为(8,0),点B的坐标为(0,8),即可得OA=8,根据锐角三角函数的定义即可求得=30°;(2)①由,根据平行线分线段成比例定理可得,又因OM=AM,可得OH=BH,再由BN=AN,根据三角形的中位线定理可得,即可判定四边形AMHN是平行四边形;②点D在该抛物线的对称轴上,如图,过点D作DRy轴于点R,由可得∠NHB=∠AOB=90°,由,可得∠DHB=∠OBA=30°,又因,根据全等三角形的性质可得∠HDG=∠OBA=30°,即可得∠HDN=∠HND,所以DH=HN=OA=4,在Rt△DHR中,DR=DH=,即可判定点D的横坐标为-2.又因抛物线的对称轴为直线,所以点D在该抛物线的对称轴上; 试题解析:(1)8,30; (2)①证明:∵, ∴, 又∵OM=AM, ∴OH=BH, 又∵BN=AN ∴ ∴四边形AMHN是平行四边形 ②点D在该抛物线的对称轴上,理由如下: 如图,过点D作DRy轴于点R, ∵ ∴∠NHB=∠AOB=90°, ∵, ∴∠DHB=∠OBA=30°, 又∵ ∴∠HDG=∠OBA=30°, ∴∠HDG=∠DHB=30°, ∴∠HGN=2∠HDG=60°, ∴∠HNG=90°-∠HGN=90°-60°=30°, ∴∠HDN=∠HND, ∴DH=HN=OA=4 在Rt△DHR中,DR=DH=, ∴点D的横坐标为-2. 又因抛物线的对称轴为直线, ∴点D在该抛物线的对称轴上. (3)12 . 考点:二次函数综合题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 沈阳市 中考 数学试题 答案 解析 Word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文