分享
分销 收藏 举报 申诉 / 7
播放页_导航下方通栏广告

类型h和p方法区别.doc

  • 上传人:w****g
  • 文档编号:2295288
  • 上传时间:2024-05-26
  • 格式:DOC
  • 页数:7
  • 大小:156.04KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    方法 区别
    资源描述:
    (word完整版)h和p方法区别 Summary:   In terms of computing time, the h and p methods will have about the same requirements。 In each case you are solving for about the same number of nodes. The h—method increases the number of nodes by adding more elements. The p-method increases the number of nodes by increasing the order of the shape function。 h-method采用简单的形状函数,要增加节点通过增加单元数量而各个单元形状函数不变 p-method采用比较复杂单元形状函数,要增加节点通过增加单元阶数,而数量不变。 h—method适用于任何类型分析,但是p-method只适用于线性结构静力分析,根据所要解决的问题,h—method需要的网格比p-method更细。p-method用较粗糙的网格也能达到较高的精度。 Overview:   There are two common methods of solving problems within finite element programs. These methods are the h-method and the p—method。 With each method the geometry to be analyzed is broken into finite elements. The difference between the two methods lies in how these elements are treated. The h—method uses many simple elements, whereas the p—method uses few complex elements。     H—Method:   The simplest type of element has a linear shape function。 This means that the function for displacement across the element is linear. With the h—method, the shape function of the element will usually be linear。 In an actual part, it is quite uncommon for the displacement to vary linearly。 The h-method accounts for this by increasing the number of elements。 More accurate information is obtained by increasing the number of elements.   The name for the h—method is borrowed from mathematics. The finite element method was originally developed by the work of mathematicians, particularly those who worked in the area of numeric integration。 The variable h is used to specify the step size in numeric integration. This variable name carried over into finite element analysis。   The upside to only using linear shape functions is that it easy to solve the element equations. The downside is that the strain across the element must be constant。 Strain is defined as the change in displacement divided by the original length. Since the displacement function is linear, strain must be constant throughout the element. Stress is derived from strain by using the modulus of elasticity, which is a constant. Therefore, stress in an element with a linear shape function must be constant.   Suppose that the actual stress across a part varied by the function represented by the curve in Figure 1。  If the problem was analyzed using linear shape functions, then the results for a course mesh would be represented by the bars in Figure 1.   Figure 1:  H—Method with Course Mesh   If a part is modeled with a very course mesh, then the stress distribution across the part will be very inaccurate. In order to more accurately find the stress distribution across the part, we will need to increase the number of elements.  If the number of elements are doubled, then the stress distribution would be represented by the bars in Figure 2。   Figure 2: H-Method with Fine Mesh   To save computing time, it is most beneficial to increase the number of nodes only in the areas where more nodes are necessary。 If a large section of the part is under a constant stress, then only a few elements will be required。 This will save a lot of computing time。   The number of elements must only be increased in areas where the stress is changes quickly over a small distance。 This could be the area where a load is applied, around a hole, or where geometry is changing. In these areas the stress can change dramatically over a very small distance。 It is up to the user to determine where more elements will be required to obtain an accurate solution.     P—Method: With p-elements, once a mesh is created, it does not need to be changed。 Rather than changing the number of elements, the shape function of the element will be changed to handle non-linear displacement functions. In areas where the stress is changing quickly, the complexity of the shape function is changed rather than changing the size of the elements。 More accurate information is obtained by increasing the complexity of the shape function。   The p in p—method stands for polynomial。 Increasing the polynomial order of the shape function changes the accuracy of the p-method. This allows a very complex displacement function to be approximated across a large element。   If the shape function is second order, then the strain across the element will be linear. Using the same example stress distribution as before, the results would be represented by the bars in Figure 3。   Figure 3:  P-Method with 2nd Order Polynomial   If this does not accurately reflect the strain in the element, then the order of the shape function can be increased to third order. This will allow strain over the element to be a second order function。 The results would be represented by the bars in Figure 4。   Figure 4:  P-Method with 3rd Order Polynomial   Often with p—method programs, the polynomial order can be increased as high as nine。 This allows for an eighth order strain function over the element。   The upside to the p-method is that high ordered shape function can approximate the strain distribution in an element very closely。 The downside is that it requires a lot of computing time to solve a high order shape function. In order to save computing time, it is beneficial to only increase the polynomial order in the elements where more complex shape functions are needed。     Summary:   In terms of computing time, the h and p methods will have about the same requirements. In each case you are solving for about the same number of nodes. The h-method increases the number of nodes by adding more elements。 The p—method increases the number of nodes by increasing the order of the shape function。 h—method采用简单的形状函数,要增加节点通过增加单元数量而各个单元形状函数不变 p—method采用比较复杂单元形状函数,要增加节点通过增加单元阶数,而数量不变。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:h和p方法区别.doc
    链接地址:https://www.zixin.com.cn/doc/2295288.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork