给定xy的条件期望是x的线性函数.ppt
《给定xy的条件期望是x的线性函数.ppt》由会员分享,可在线阅读,更多相关《给定xy的条件期望是x的线性函数.ppt(68页珍藏版)》请在咨信网上搜索。
1、简单回归模型n简单回归模型的定义n普通最小二乘法的推导nOLS的操作技巧n度量单位和函数形式nOLS估计量的期望值和方差n过原点回归1-简单回归模型2-简单回归模型的定义n 在简单线性回归模型y=b b0+b b1x+u中,我们一般称y为:qDependent Variable(因变量)qLeft-Hand Side VariableqExplained Variable(被解释变量)qRegressand(回归子)3-n在简单线性回归模型y=b b0+b b1x+u中,我们一般称x为qIndependent Variable(自变量)qRight-Hand Side VariableqExp
2、lanatory Variable(解释变量)qRegressor(回归元)qCovariate(协变量)qControl Variables(控制变量)4-简单回归的术语 yx因变量自变量被解释变量解释变量响应变量控制变量被预测变量预测变量回归子回归元5-A Simple Assumption(一个简单假设)n变量u称为 error term(误差差项)或者 disturbance(扰动项)代表除了x之外影响y的其它因素。计量研究关注的是x而非u对y的影响,但u与x的关系至关重要。n如果u中的其他因素保持不变,则u的变动为零,x对y存在线性效应,可得2.2,其中b1为斜率参数。n总体中u的均
3、值为零,意味着:E(u)=0n既然我们可以用b0 将E(u)标准化为零,E(u)=0 并非一个限制性条件。6-零条件均值假定nu和x的相关性假定至关重要。n 相关关系只度量了u和x之间的线性关系,u和x不相关,但却可能与x的函数比如x2相关。一种更好的方法是,对给定x时u的期望做出假定:u的平均值与x值无关,即 E(u|x)=E(u)=0nE(y|x)=b b0+b b1x population regression function(总体回归函数)7-E(y|x)是x的一个线性函数,对任何给定的x值,y的分布都以 E(y|x)为中心。8-2.2普通最小二乘法的推导n回归的基本思想是利用样本估
4、计总体参数n令(xi,yi):i=1,n 表示从总体中抽取的一个容量为n的随机样本。n对于样本中的每一个观测,我们都可以写作 yi=b0+b1xi+ui9-.y4y1y2y3x1x2x3x4u1u2u3u4xy总体回归线、样本数据点集和相关的误差项E(y|x)=b0+b1x10-OLS估计值的推导nE(u|x)=E(u)=0 意味着x和u之间的协方差也为零,即 Cov(x,u)=E(xu)=0 n因为:Cov(X,Y)=E(XY)E(X)E(Y)11-OLS推导续n 既然u=y b0 b1x我们可以将上述两个限制条件改写为由 x,y,b0 and b1 表达的式子E(y b0 b1x)=0 E
5、x(y b0 b1x)=0n这被称为矩条件。12-运用矩法推导OLSn运用矩法进行估计意味着将总体的矩条件应用于样本矩条件.13-OLS推导续n给定样本均值的定义和求和的性质,条件一可改写为:14-15-16-OLS估计的斜率参数x 和 y之间的样本协方差x的样本方差17-OLS斜率估计值的相关总结n斜率估计值等于x和y之间的样本协方差除以x的样本方差。n 斜率估计值的符号取决于x和y的正负相关性:x和y正相关,斜率估计值为正;x和y负相关,斜率估计值为负。n得到斜率估计值的必要条件是,x在样本中是有变异的。18-19-nOLS通过样本点来拟合曲线,使得残差平方和尽可能小,故称为“最小二乘”法
6、。n残差是误差项u的估计值,等于实际观察值与拟合值(样本回归函数)之差。20-拟合值和残差.y4y1y2y3x1x2x3x41234xy21-推导的另一思路n根据拟合曲线的直观思想,我们可以通过建立最小化问题,即我们选择可使残差平方和最小化的参数:22-推导的另一思路(续)n利用微积分优化,我们可得到OLS估计值的一阶条件:23-n例子 2.3 CEO 薪酬和股本回报率24-25-2.3 OLS的操作技巧n拟合值和残差26-27-OLS的代数性质 n OLS残差之和等于零。n OLS残差的样本均值为零。n x与 的样本协方差为零。nOLS回归线总是通过样本均值:点 总在OLS回归线上28-29
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 给定 xy 条件期望 线性 函数
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。