八年级四边形动点专题复习.ppt
《八年级四边形动点专题复习.ppt》由会员分享,可在线阅读,更多相关《八年级四边形动点专题复习.ppt(38页珍藏版)》请在咨信网上搜索。
1、动动 点点 问问 题题 探探 究究大家好1 最后一题并不可怕,更要有信心!最后一题并不可怕,更要有信心!图形中的点、线运动,构成了数学中的一个新问题图形中的点、线运动,构成了数学中的一个新问题-动态几何。它通常分为三种类型:动点问题、动线问题、动动态几何。它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不形问题。在解这类问题时,要充分发挥空间想象的能力,不要被要被“动动”所迷惑,而是要在所迷惑,而是要在“动动”中求中求“静静”,化,化“动动”为为“静静”,抓住它运动中的某一瞬间,寻找,抓住它运动中的某一瞬间,寻找确定的关系式确定的关系式,就能找到解决
2、问题的途径。就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型本节课重点来探究动态几何中的第一种类型-动点问动点问题。题。大家好21、如图:已知、如图:已知 ABCD中,中,AB=7,BC=4,A=30(1)点点P从点从点A沿沿AB边向点边向点B运动,速度为运动,速度为1cm/s。7430P若设运动时间为若设运动时间为t(s),连接,连接PC,当当t为何值时,为何值时,PBC为等腰三角为等腰三角形?形?若若 PBC为等腰三角形为等腰三角形则则PB=BC7-t=4t=3大家好3如图:已知如图:已知 ABCD中,中,AB=7,BC=4,A=30(2)若点若点P从点从点A沿沿 AB运动,
3、速度仍是运动,速度仍是1cm/s。当当t为何值时,为何值时,PBC为等腰三角形?为等腰三角形?P74射线射线小组合作交流讨论大家好4P74当BP=BC时(锐角)P7430当CB=CP时EP当PB=PC时74PE74当BP=BC时(钝角)大家好51、如图:已知、如图:已知 ABCD中,中,AB=7,BC=4,A=30P74当BP=BC时P7430当CB=CP时EP当PB=PC时74PE74当BP=BC时(2)若点若点P从点从点A沿射线沿射线AB运动,速度仍是运动,速度仍是1cm/s。当当t为何值时,为何值时,PBC为等腰三角形?为等腰三角形?探究动点关键:化动为静,分类讨论,关注全过程探究动点关
4、键:化动为静,分类讨论,关注全过程(2)若点若点P从点从点A沿射线沿射线AB运动,速度仍是运动,速度仍是1cm/s。当当t为何值时,为何值时,PBC为等腰三角形?为等腰三角形?P74当BP=BC时(钝角)当BP=BC时(锐角)当CB=CP时当PB=PC时t=3或11或7+或 /3 时 PBC为等腰三角形为等腰三角形大家好61.如图:已知如图:已知 ABCD中,中,AB=7,BC=4,A=30(3)当)当t7时,是否存在某一时刻时,是否存在某一时刻t,使得线段使得线段DP将线段将线段BC三等分?三等分?PEPE解决动点问题的好助手:数形结合定相似比例线段构方程大家好72.在在Rt ABC中,中,
5、C=90,AC=6cm,BC=8cm,点点P由点由点A出发出发 ,沿,沿AC向向C匀速运动,速度为匀速运动,速度为2cm/s,同时,同时 P点点Q由由AB中点中点D出发,沿出发,沿DB向向B匀速运动,速度为匀速运动,速度为1cm/s,DQ连接连接PQ,若设运动时间为,若设运动时间为t(s)(0t 3)(1)当)当t为何值时,为何值时,PQ BC?大家好8(1)当)当t为何值时,为何值时,PQ BC?PDQ2.在在Rt ABC中,中,C=90,AC=6cm,BC=8cm,点点P由点由点A出发出发 ,沿,沿AC向向C运动,速度为运动,速度为2cm/s,同时同时 点点Q由由AB中点中点D出发,沿出发
6、,沿DB向向B运动,速度为运动,速度为1cm/s,连接连接PQ,若设运动时间为,若设运动时间为t(s)(0t 3)若若PQBC则则 AQP ABC大家好9(2)设设 APQ的面积为的面积为y(),求,求y与与t之间的函数关系。之间的函数关系。MN2.在在Rt ABC中,中,C=90,AC=6cm,BC=8cm,点点P由点由点A出发出发 ,沿,沿AC向向C运动,速度为运动,速度为2cm/s,同时同时 点点Q由由AB中点中点D出发,沿出发,沿DB向向B运动,速度为运动,速度为1cm/s,连接连接PQ,若设运动时间为,若设运动时间为t(s)(0t 3)PDQPDQ大家好10NPDQAQN ABC相似
7、法相似法2.(2)大家好11NPDQ三角函数法三角函数法2.(2)大家好122.(3)是否存在某一时刻是否存在某一时刻t,使,使 APQ的面积与的面积与 ABC的面积的面积比为比为715?若存在,求出相应的?若存在,求出相应的t的值;不存在说明理由。的值;不存在说明理由。当当t=2时,时,APQ的面积与的面积与 ABC的面积比为的面积比为715PDQ计算要仔细计算要仔细大家好132.(4)连接)连接DP,得到得到 QDP,那么是否存在某一时刻,那么是否存在某一时刻t,使得点,使得点D在线段在线段QP的中垂线上?若存在,求出相应的的中垂线上?若存在,求出相应的t的值;若不存在,的值;若不存在,说
8、明理由。说明理由。G 点点D在线段在线段PQ的中垂线上的中垂线上 DQ=DP 方程无解。方程无解。即点即点D都不可能在线段都不可能在线段QP的中垂线上。的中垂线上。=1560大家好143、(、(2009中考)如图在边长为中考)如图在边长为2cm的正方形的正方形ABCD中,中,点点Q为为BC边的中点,点边的中点,点P为对角线为对角线AC上一动点,连接上一动点,连接PB、PQ,则则 周长的最小值是周长的最小值是-cm(结果不取近结果不取近似值)似值)A D PB Q C大家好15 4.4.例例 1 1、如如 图图,已已 知知 在在 直直 角角 梯梯 形形 ABCDABCD中中,ADBC ADBC,
9、B=90B=90,AD=24AD=24cmcm,BC=26BC=26cmcm,动动点点P P从从点点A A开开始始沿沿ADAD边边向向点点D D,以以1 1cmcm/秒秒的的速速度度运运动动,动动点点Q Q从从点点C C开开始始沿沿CBCB向向点点B B以以3 3厘厘米米/秒秒的的速速度度运运动动,P P、Q Q分分别别从从点点A A点点C C同同时时出出发发,当当其其中中一一点点到到达达端端点点时,另一点也随之停止运动,设运动时间为时,另一点也随之停止运动,设运动时间为t t秒,求:秒,求:1 1)t t为何值时,四边形为何值时,四边形PQCDPQCD为平行四边形为平行四边形2)2)t t为
10、何值时,等腰梯形为何值时,等腰梯形?1t3t大家好165.1)解:ADBC,只要QC=PD,则四边形PQCD为平行四边形,CQ=3t,AP=t 3t=24-t t=6,当t=6秒时,四边形PQCD为平行四边形 大家好17由题意,只要PQ=CD,PDQC,则四边形PQCD为等腰梯形FE过P、D分别作BC的垂线交BC于E、F,则EF=PD,QE=FC=2 t=7,当t=7秒时,四边形PQCD为等腰梯形。5.2)解:大家好18455543.如图如图(1):在梯形在梯形ABCD中,中,AB CD,AD=BC=5cm,AB=4cm,CD=10cm,BE AD。如图如图(2):若整个若整个 BEC从图从图
11、(1)的位置出发,以的位置出发,以1cm/s的速度沿射线的速度沿射线CD方向平移,方向平移,在在 BEC平移的同时,点平移的同时,点P从点从点D出发,以出发,以1cm/s的速度沿的速度沿DA向点向点A运动,当运动,当 BEC的边的边BE与与DA重合时,点重合时,点P也随之停止运动。设运动时间为也随之停止运动。设运动时间为t(s)(0t4)P问题:连接问题:连接 ,当当t为何值时,为何值时,为直角三角形?为直角三角形?6大家好19DP=tt=1.5t=2.545554F433大家好20小结小结:PDQMPDQ2、平行、平行4、最值问题(二次函数、最值问题(二次函数、两点之间线段最短)两点之间线段
12、最短)3、求面积、求面积5、平行四边形平行四边形 等腰梯形1、比例、比例 A 6、直角三角形、直角三角形化动为静化动为静 分类讨论分类讨论 数形结合数形结合构建函数模型、方程模型构建函数模型、方程模型思思路路大家好21 动点问题 动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。一般方法:首先根据题意理清题目中两个变量X、Y及相关常量。第二找关系式。把相关的量用一个自变量的表达式表达出来,再解出。第三,确定自变量范围,画相应的图象。必要时,多作出几个符合条件的草图也是解决问题的好办法。小结小结:收获一:化动为静收获一:化动为静收获二:分类讨论收获二:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 四边形 专题 复习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。