宁夏吴忠中学2020-2021学年高二数学下学期期中试题-文.doc
《宁夏吴忠中学2020-2021学年高二数学下学期期中试题-文.doc》由会员分享,可在线阅读,更多相关《宁夏吴忠中学2020-2021学年高二数学下学期期中试题-文.doc(13页珍藏版)》请在咨信网上搜索。
宁夏吴忠中学2020-2021学年高二数学下学期期中试题 文 宁夏吴忠中学2020-2021学年高二数学下学期期中试题 文 年级: 姓名: 13 宁夏吴忠中学2020-2021学年高二数学下学期期中试题 文 一.选择题 1.=( ) A.--i B.-+i C.--i D.-+i 2.抛物线y=4x2的焦点坐标为( ) A.(1,0) B.(2,0) C.(0,) D.(0,) 3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( ) A.1 B.2个 C.3个 D.4个 4.已知双曲线-y2=1(a>0)的离心率是,则a=( D ) A. B.4 C.2 D. 5.有下列说法: ①若某商品的销售量y(件)关于销售价格x(元/件)的线性回归方程为=-5x+350,当销售价格为10元时,销售量一定为300件; ②线性回归直线:=x+一定过样本点中心; ③在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关; ④在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好. 其中正确的结论个数为( ) A.1 B.2 C.3 D.4 6.设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1,F2,A(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是( ) A.y=±x B.y=±x C.y=±x D.y=±x 7.已知函数f(x)=xlnx,则f(x) ( ) A.在(0,+∞)上单调递增 B.在(0,+∞)上单调递减 C.在上单调递增 D.在上单调递减 8.已知P是椭圆+=1上一点,F1,F2分别为椭圆的左、右焦点,且∠F1PF2=60°,则△F1PF2面积为( ) A. B.2 C. 3 D. 9.若函数f(x)=x3+ax2+x既有极大值又有极小值,则a的取值范围是( ) A.(-∞,-) B.(-∞,-)∪ (,+∞) C.(-,) D.(,+∞) 答案:b 10.椭圆4x2+9y2=144内有一点P(3,2),则以P为中点的弦所在直线的斜率为( ) A.- B.- C.- D.- 11.曲线y=2sinx+cosx在点(π,-1)处的切线方程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0 12.设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是( ) A.(1,2] B.[4,+∞) C.(-∞,2] D.(0,3] 二、填空题(本题共4小题,每小题5分,共20分) 13.抛物线上一点到其焦点距离为,则该点坐标为 . 14.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=________. 15.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若·=0,则椭圆的离心率为( ) 16.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为( ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,-1)∪(1,+∞) 三.解答题 17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表: 满意 不满意 男顾客 40 10 女顾客 30 20 (1)分别估计男、女顾客对该商场服务满意的概率; (2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K2=. P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 18.(1)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为. (2)已知双曲线-=1(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(,4),则双曲线的方程是( C ) A.-=1 B.-=1 C.-=1 D.x2-=1 19.已知函数f(x)=x3+ax2+bx在x=1与x=-处都取得极值. (1)求函数f(x)的解析式及单调区间; (2)求函数f(x)在区间[-1,2]的最大值与最小值. 20.如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD的面积为2,求四棱锥PABCD的体积. 21.(本小题12分) 已知椭圆,点是椭圆C上一点,离心率为. (1)求椭圆C的标准方程; (2)直线l:y=x+m与椭圆C相交于A,B两点,且在y轴上有一点M(0,2m),当面积最大时,求m的值. 22.(12分)已知函数f(x)=ex-ax(a∈R). (1)讨论f(x)的单调性; (2)若f(x)<0在[-1,+∞)上有解,求a的取值范围. 吴忠中学2020—2021学年度第二学期高二年级 期中考试数学文试题 一.选择题 1.=( ) A.--i B.-+i C.--i D.-+i 解:===-+i.故选D. 2.抛物线y=4x2的焦点坐标为( ) A.(1,0) B.(2,0) C.(0,) D.(0,) 解:抛物线y=4x2的标准方程为x2=y,故其焦点坐标为(0,).故选d 3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( ) A.1 B.2个 C.3个 D.4个 解:由f′(x)的图象可知,函数f(x)在区间(a,b)内,先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.故选A. 4.已知双曲线-y2=1(a>0)的离心率是,则a=( D ) A. B.4 C.2 D. 解析:解法1:由双曲线方程可知b2=1,所以c==,所以e===,解得a=,故选D. 解法2:由e=,e2=1+,b2=1,得5=1+,得a=,故选D. 5.有下列说法: ①若某商品的销售量y(件)关于销售价格x(元/件)的线性回归方程为=-5x+350,当销售价格为10元时,销售量一定为300件; ②线性回归直线:=x+一定过样本点中心; ③在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关; ④在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好. 其中正确的结论个数为( ) A.1 B.2 C.3 D.4 解:对于①,线性回归方程为=-5x+350,当销售价格为10元时,销售量近似为300件,故①错误; 对于②,线性回归直线:=x+一定过样本点中心,故②正确; 对于③,与带状区域的宽度有关,带状区域越窄,说明回归方程的预报精确度越高,故④错误; 对于④,R2越接近于1,表示回归的效果越好,故⑤正确. 所以正确的结论有2个.故选B. 6.设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1,F2,A(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是( ) A.y=±x B.y=±x C.y=±x D.y=±x 解:由题设可知=2c⇒4b2=3c2,即b2=3a2⇒=.故选B. 【点拨】 本例考查双曲线中a,b,c的关系,以及双曲线的渐近线等知识.渐近线方程可以看作是把双曲线方程中的“1”用“0”替换而得到的两条直线方程. 7.已知函数f(x)=xlnx,则f(x) ( ) A.在(0,+∞)上单调递增 B.在(0,+∞)上单调递减 C.在上单调递增 D.在上单调递减 解:函数f(x)的定义域为(0,+∞),所以f′(x)=lnx+1(x>0).当f′(x)>0时,解得x>,即函数的单调递增区间为;当f′(x)<0时,解得0<x<,即函数的单调递减区间为.故选D. 8.已知P是椭圆+=1上一点,F1,F2分别为椭圆的左、右焦点,且∠F1PF2=60°,则△F1PF2面积为( ) A. B.2 C. 3 D. 解析:方法1:由椭圆的标准方程可得a=5,b=3,∴c=4.设|PF1|=t1,|PF2|=t2,由椭圆的定义可得t1+t2=10①. ∵在△F1PF2中,∠F1PF2=60°,∴根据余弦定理可得|PF1|2+|PF2|2-2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得t+t-t1t2=64②. 把①两边平方得t+t+2t1t2=100 ③,由③-②得t1t2=12,∴S△F1PF2=t1t2·sin∠F1PF2=3.故选A. 方法2:由于椭圆焦点三角形的面积公式为S=b2tan,故所求面积为9tan30°=3.故选c. 9.若函数f(x)=x3+ax2+x既有极大值又有极小值,则a的取值范围是( ) A.(-∞,-) B.(-∞,-)∪ (,+∞) C.(-,) D.(,+∞) 答案:b 10.椭圆4x2+9y2=144内有一点P(3,2),则以P为中点的弦所在直线的斜率为( ) A.- B.- C.- D.- 解析:设以P为中点的弦所在的直线与椭圆交于点A(x1,y1),B(x2,y2),斜率为k,则4x+9y=144,4x+9y=144,两式相减得4(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,又x1+x2=6,y1+y2=4,=k,代入解得k=-. 11.曲线y=2sinx+cosx在点(π,-1)处的切线方程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0 解:因为y′=2cosx-sinx,所以y′|x=π=2cosπ-sinπ=-2,则y=2sinx+cosx在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.故选C. 12.设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是( ) A.(1,2] B.[4,+∞) C.(-∞,2] D.(0,3] 解:f′(x)=x-(x>0),当x-≤0时,有0<x≤3,即函数f(x)的单调递减区间是(0,3],所以0<a-1<a+1≤3,解得1<a≤2.故选A. 二、填空题(本题共4小题,每小题5分,共20分) 13.抛物线上一点到其焦点距离为,则该点坐标为 . 14.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=________. 解:f′(x)=2f′(1)+,令x=1,得f′(1)=2f′(1)+1,解得f′(1)=-1 15.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若·=0,则椭圆的离心率为( ) 解:由题意知,M(-a,0),N(0,b),F(c,0),所以=(-a,-b),=(c,-b).因为·=0,所以-ac+b2=0,即b2=ac.又b2=a2-c2,所以a2-c2=ac,所以e2+e-1=0,解得e=或e=(舍去).所以椭圆的离心率为. 16.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为( ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,-1)∪(1,+∞) 解:令g(x)=f(x)-2x-1,所以g′(x)=f′(x)-2<0,所以g(x)在R上为减函数,g(1)=f(1)-2-1=0.由g(x)<0=g(1),得x>1.故选A. 三.解答题 17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表: 满意 不满意 男顾客 40 10 女顾客 30 20 (1)分别估计男、女顾客对该商场服务满意的概率; (2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K2=. P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 解:(1)由调查数据,男顾客中对该商场服务满意的比率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)K2==≈4.762. 由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 18.(1)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为. 解析:设P(x0,y0),则x0+1=4,故x0=3,所以y0=±2.又F(1,0),所以S△PFO=×2×1=. (2)已知双曲线-=1(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(,4),则双曲线的方程是( C ) A.-=1 B.-=1 C.-=1 D.x2-=1 解析:因为双曲线的一条渐近线方程为y=2x,所以=2 ①.又双曲线过点P(,4),所以-=1 ②.①②联立,解得a=,b=2,所以双曲线的方程为-=1,故选C. 19.已知函数f(x)=x3+ax2+bx在x=1与x=-处都取得极值. (1)求函数f(x)的解析式及单调区间; (2)求函数f(x)在区间[-1,2]的最大值与最小值. 解:(1)因为f(x)=x3+ax2+bx,所以f′(x)=3x2+2ax+b, 因为f(x)在x=1与x=-处都取得极值, 所以 即 解得 即f(x)=x3-x2-2x, 所以f′(x)=3x2-x-2=(3x+2)(x-1), 令f′(x)>0⇒x>1或x<-, 令f′(x)<0⇒-<x<1, 所以f(x)的单调递增区间是,(1,+∞),单调递减区间是. (2)由(1)可知, x - 1 (1,2) f′(x) + 0 - 0 + f(x) ↗ 极大值 ↘ 极小值 ↗ f(x)的极小值f(1)=-,f(x)的极大值f=,而f(-1)=,f(2)=2,可得x∈[-1,2]时,f(x)max=2,f(x)min=-. 20.如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD的面积为2,求四棱锥PABCD的体积. 解:(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD. 又BC⊄平面PAD,AD⊂平面PAD, 故BC∥平面PAD. (2)取AD的中点M,连结PM,CM. 由AB=BC=AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD. 因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD, 因为CM⊂底面ABCD,所以PM⊥CM. 设BC=x,则CM=x,CD=x,PM=x,PC=PD=2x. 取CD的中点N,连结PN,则PN⊥CD,所以PN=x. 因为△PCD的面积为2,所以×x×x=2, 解得x=-2(舍去),或x=2,于是AB=BC=2,AD=4,PM=2, 所以四棱锥PABCD的体积V=××2=4. 21.(本小题12分) 已知椭圆,点是椭圆C上一点,离心率为. (1)求椭圆C的标准方程; (2)直线l:y=x+m与椭圆C相交于A,B两点,且在y轴上有一点M(0,2m),当面积最大时,求m的值. 【答案】 解:由题意可得,且,, 解得,, 则椭圆的方程为; 由直线l的方程为,则到直线l的距离, 将直线代入椭圆方程可得, 由判别式,解得, 设,, 则,, 由弦长公式可得, , 当且仅当时取得等号. 即当面积最大时,m的值为. 22.(12分)已知函数f(x)=ex-ax(a∈R). (1)讨论f(x)的单调性; (2)若f(x)<0在[-1,+∞)上有解,求a的取值范围. 解:(1)因为f(x)=ex-ax(a∈R),所以f′(x)=ex-a, 当a≤0时,f′(x)>0,则f(x)在R上单调递增; 当a>0时,令f′(x)=0,解得x=lna,f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减. (2)由(1)可知,当a≤0时,f(x)在R上单调递增,因为f(x)<0在[-1,+∞)上有解,所以f(-1)=+a<0,则a<-. 当a>0时,f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减. ①当0<a≤时,lna≤-1,f(x)在[-1,+∞)上单调递增,所以f(-1)=+a<0,则a<-,不符合题意; ②当a>时,lna>-1,f(x)在(lna,+∞)上单调递增,在(-1,lna)上单调递减, 所以f(x)min=f(lna)=a-alna<0,则a>e. 综上,a∈∪(e,+∞).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 宁夏 吴忠 中学 2020 2021 学年 数学 学期 期中 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文