分享
分销 收藏 举报 申诉 / 15
播放页_导航下方通栏广告

类型高三一轮复习全套直线和圆的方程:简单的线性规划.ppt

  • 上传人:精***
  • 文档编号:2289372
  • 上传时间:2024-05-25
  • 格式:PPT
  • 页数:15
  • 大小:405KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一轮 复习 全套 直线 方程 简单 线性规划
    资源描述:
    xyo5/24/20241广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运返回返回课题引入例例:若实数若实数x,y满足:满足:4x+y6 2x-y4 求求2x+y的取值范围。的取值范围。不正确,因为要使2x+y=12,必须 x=5,y=2,x+y=7不满足条件解:由解:由、同向相加可求得:同向相加可求得:62x10 由由得:得:-4y-x2 将上式与将上式与同向相加,得:同向相加,得:0y2 +得得:62x+y12.以上解法正确吗?以上解法正确吗?5/24/20242广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运例题分析 1分分析析:通通过过前前面面的的学学习习我我们们知知道道,二二元元一一次次不不等等式式表表示示平平面面区区域域,上上述述不不等等式式组组表表示示一一个个平平面面区区域域,我我们们应应该该先先画画出出图图形形。它它的的平平面面区区域域图图形形该该怎怎样样画画呢呢?我们先看一个例子。我们先看一个例子。例例1:设:设z=2x+y,且实数且实数x,y满足:满足:4x+y6 2x-y4 求求z的取值范围的取值范围.5/24/20243广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运画出不等式组画出不等式组 表示的平面区域。表示的平面区域。3x+5y 25 x-4y-3x15/24/20244广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运3x+5y25x-4y-3x1在该平面区域上 问题 1 1:有无最大(小)值?问题:有无最大(小)值?xyox-4y=-33x+5y=25x=1问题:2 2+有无最大(小)值?CAB5/24/20245广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运xyox=1CB设z z2 2+,式中变量、满足下列条件,求的最大值和最小值。3x+5y25x-4y-3x1x-4y=-3x-4y=-33x+5y=253x+5y=255/24/20246广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运xyox-4y=-3x=1C 设z z2 2+,式中变量、满足下列条件,求的最大值和最小值。3x+5y253x+5y25x-4y-3x-4y-3x1x1B3x+5y=25问题问题 1:将z z2 2+变形?问题问题 2:z几何意义是_。斜率为斜率为-2的直线在的直线在y轴上的截距轴上的截距 则直线 l:2 2+=z=z是一簇与 l0平行的直线,故 直线 l 可通过平移直线l0而得,当直 线往右上方平移时z 逐渐增大:当l 过点 B(1,1)时,z 最小,即zmin=3 当l 过点A(5,2)时,最大,即 zmax25+212。析析:作直线l0:2 2+=0,=0,-2-2+z+z5/24/20247广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运最优解最优解:使使目标函数达到目标函数达到最大值最大值或或 最小值最小值 的可的可 行行 解。解。线性约束条件:线性约束条件:约束条件中均为关于约束条件中均为关于x、y的一次不等式或方程。的一次不等式或方程。有关概念有关概念约束条件约束条件:由、的不等式(方程)构成的不等式组。由、的不等式(方程)构成的不等式组。目标函数:目标函数:欲求最值的关于欲求最值的关于x、y的一次解析式的一次解析式。线性目标函数:线性目标函数:欲求最值的解析式是关于欲求最值的解析式是关于x、y的一次解析式。的一次解析式。线性规划:线性规划:求线性目标函数在线性约束条件下的最大值或最小值求线性目标函数在线性约束条件下的最大值或最小值。可行解:可行解:满足线性约束条件的解(满足线性约束条件的解(x,y)。)。可行域:可行域:所有可行解组成的集合。所有可行解组成的集合。xyox-4y=-3x=1CB3x+5y=25 设Z2+,式中变量、满足下列条件,求的最大值和最小值。3x+5y25x-4y-3x15/24/20248广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运B Cxyox4y=33x+5y=25x=1 例例1:设:设z2xy,式中变量式中变量x、y满足下列条件满足下列条件 求的最大值和最小值。求的最大值和最小值。3x+5y25x 4y3x1解:作出可行域如图解:作出可行域如图:当当0时,设直线时,设直线 l l0 0:2xy0 当当l l0 0经过可行域上点经过可行域上点A时,时,z 最小,即最小,即最大。最大。当当l l0 0经过可行域上点经过可行域上点C时,时,最大,即最大,即最小。最小。由由 得得A点坐标点坐标_;x4y3 3x5y25由由 得得C点坐标点坐标_;x=1 3x5y25 zmax2528 zmin214.4 2.4(5,2)(5,2)(1,4.4)(1,4.4)平移平移l l0 0,平移平移l l0 0,(5,2)2xy0(1,4.4)(5,2)(1,4.4)5/24/20249广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运解线性规划问题的步骤:解线性规划问题的步骤:2 2、在线性目标函数所表示的一组平行线在线性目标函数所表示的一组平行线 中,用平移的方法找出与可行域有公中,用平移的方法找出与可行域有公 共点且纵截距最大或最小的直线;共点且纵截距最大或最小的直线;3 3、通过解方程组求出最优解;通过解方程组求出最优解;4 4、作出答案。作出答案。1 1、画出线性约束条件所表示的可行域;画出线性约束条件所表示的可行域;画画移移求求答答5/24/202410广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运3x+5y=25 例例2:已知:已知x、y满足满足 ,设,设zaxy(a0),若若 取得最大值时,对应点有无数个,求取得最大值时,对应点有无数个,求a 的值。的值。3x+5y25 x 4y3x1xyox-4y=-3x=1CB B解:解:当直线当直线 l l:y ax z 与与直线重合时,有无数个点,使直线重合时,有无数个点,使函数值取得最大值,此时有:函数值取得最大值,此时有:k l l kAC kACk l l=-a -a=a=5/24/202411广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运例例3:满足线性约束条件:满足线性约束条件 的可行域中共有的可行域中共有 多少个整数解。多少个整数解。x+4y113x+y10 x0y01223314455xy03x+y=10 x+4y=11解:解:由题意得可行域如图由题意得可行域如图:由图知满足约束条件的由图知满足约束条件的可行域中的整点为可行域中的整点为(1,1)、(1,2)、(2,1)、(2,2)故有四个整点可行解故有四个整点可行解.5/24/202412广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运练习:练习:设Z Z+3+3,式中变量、满足下列条件,求的最大值和最小值。x-y 7 2x+3y24 x0y 6y 05/24/202413广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运小结小结:1线性规划问题的有关概念;2.用图解法解线性规划问题的一般步骤;3.求可行域中的整点可行解。5/24/202414广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运5/24/202415广州市花都区高中数学学科带头人广州市花都区高中数学学科带头人 陈文运陈文运
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高三一轮复习全套直线和圆的方程:简单的线性规划.ppt
    链接地址:https://www.zixin.com.cn/doc/2289372.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork