安徽省高中数学平面向量复习一课件人教版必修四.ppt.ppt
《安徽省高中数学平面向量复习一课件人教版必修四.ppt.ppt》由会员分享,可在线阅读,更多相关《安徽省高中数学平面向量复习一课件人教版必修四.ppt.ppt(19页珍藏版)》请在咨信网上搜索。
平面向量复习一平面向量复习一 高一数学组5/21/20241平平 面面 向向 量量 复复 习习 表示表示运算运算 实数与向量实数与向量 的积的积 向量加法向量加法与减法与减法 向量的数量积向量的数量积 平行四边形法则平行四边形法则向量平行、向量平行、垂直的条件垂直的条件平面向量的平面向量的基本定理基本定理三三 角角 形形 法法 则则向量的三种表示向量的三种表示向量的相关概念向量的相关概念5/21/20242一、向量的相关概念一、向量的相关概念:(1)零向量:)零向量:(2)单位向量:)单位向量:(3)平行向量:)平行向量:(4)相等向量:)相等向量:(5)相反向量:)相反向量:2)重要概念:重要概念:3)向量的表示向量的表示4)向量的模(长度)向量的模(长度)1)定义定义5/21/202432)实数实数与向量与向量 a 的积的积3)平面向量的数量积:平面向量的数量积:(1)两向量的两向量的夹角夹角定义定义(2)平面向量平面向量数量积数量积的定义的定义(4)平面向量数量积的平面向量数量积的几何意义几何意义(3)a在在b上的上的投影投影(5)平面向量数量积的平面向量数量积的运算律运算律二、向量的运算二、向量的运算1)加法:)加法:两个法则两个法则 坐标表示坐标表示 减法减法:法则法则 坐标表示坐标表示 运算律运算律5/21/20244三、平面向量之间关系三、平面向量之间关系向量平行向量平行(共线共线)条件的两种形式条件的两种形式:向量垂直条件的两种形式向量垂直条件的两种形式:(3)两个向量相等的条件是两个向量的坐)两个向量相等的条件是两个向量的坐标相等标相等.四、平面向量的基本定理四、平面向量的基本定理注注:满足什么条件的向量可作为基底满足什么条件的向量可作为基底?5/21/20245向量定义:向量定义:既有既有大小大小又有又有方向方向的量叫向量。的量叫向量。重要概念:重要概念:(1)零向量:)零向量:长度为长度为0的向量,记作的向量,记作0.(2)单位向量:)单位向量:长度为长度为1个单位长度的向量个单位长度的向量.(3)平行向量:)平行向量:也叫也叫共线向量,方向相同或相反共线向量,方向相同或相反的非零向量的非零向量.(4)相等向量:)相等向量:长度相等且方向相同的向量长度相等且方向相同的向量.(5)相反向量:)相反向量:长度相等且方向相反的向量长度相等且方向相反的向量.5/21/20246几何表示 :有向线段有向线段向量的表示字母表示 坐标表示 :(x,y)若若 A(x1,y1),B(x2,y2)则则 AB=(x2 x1,y2 y1)5/21/20247向量的模(长度)向量的模(长度)1.设设 a=(x ,y),则则2.若表示向量若表示向量 a 的起点和终点的坐标分别的起点和终点的坐标分别 为为A A(x1,y1)、B(x2,y2),则,则5/21/20248平平 面面 向向 量量 复复 习习1.向量的加法运算向量的加法运算ABC AB+BC=三角形法则三角形法则OABC OA+OB=平行四边形法则平行四边形法则坐标运算坐标运算:则则a +b=重要结论:重要结论:AB+BC+CA=0设设 a=(x1,y1),b=(x2,y2)(x1+x2,y1+y2)AC OC5/21/20249平平 面面 向向 量量 复复 习习2.向量的减法运算向量的减法运算1)减法法则:)减法法则:OAB2)坐标运算)坐标运算:若若 a=(x1,y1),b=(x2,y2)则则a b=3 3.加加法运算率法运算率a+b=b+a(a+b)+c=a+(b+c)1)交换律:)交换律:2)结合律:)结合律:BA(x1 x2,y1 y2)OAOB=5/21/202410平平 面面 向向 量量 复复 习习实数实数与向量与向量 a 的积的积定义定义:坐标运算:坐标运算:其其实质就是向量的伸长或缩短!实质就是向量的伸长或缩短!a a是一个是一个是一个是一个向量向量.它的它的它的它的长度长度长度长度|a a|=|=|a|;它的它的它的它的方向方向方向方向(1)(1)当当当当00时时时时,a a 的方向的方向的方向的方向与与与与a a方向方向方向方向相同相同相同相同;(2)(2)当当当当 0 0时时时时,a a 的方向的方向的方向的方向与与与与a a方向方向方向方向相反相反相反相反.若若a a=(x,y),则则 a a=(x,y)=(x,y)5/21/202411v1、平面向量的数量积平面向量的数量积v(1)a与与b的夹角的夹角:(2)向量夹角的范围)向量夹角的范围:(3)向量垂直)向量垂直:00,1800ab共同的起点共同的起点aOABbOABOABOABOAB5/21/202412(4)两个非零向量的数量积:)两个非零向量的数量积:v规定:规定:零向量与任一向量的数量积为0a b=|a|b|cos几何意义:几何意义:数量积 a b 等于 a 的长度|a|与 b 在 a 的方向上的投影|b|cos的乘积。AabBB1OBAbB1aOBb(B1)AaO5/21/2024135、数量积的运算律:、数量积的运算律:交换律:交换律:对数乘的结合律:对数乘的结合律:分配律:分配律:注意:注意:数量积不满足结合律数量积不满足结合律5/21/202414平面向量数量积的重要性质平面向量数量积的重要性质v(1)e a=a e=|a|cosv(2)a b的条件是 a b=0 v (3)当 a与b同向时,a b=|a|b|;v 当 a 与b 反向时,a b=-|a|b|v 特别地:a a=|a|2 或|a|=v v(4)cos=(5)|ab|a|b|a,b为非零向量,为非零向量,e为单位向量为单位向量5/21/202415二、平面向量之间关系向量平行向量平行(共线共线)条件的两种形式条件的两种形式:向量垂直条件的两种形式向量垂直条件的两种形式:5/21/202416(3)两个向量相等的条件是两个向量的)两个向量相等的条件是两个向量的坐标相等坐标相等.即即:那么那么 三、平面向量的基本定理平面向量的基本定理如果 是同一平面内的两个不共线不共线向量,那么对于这一平面内的任一向量 ,有且只有有且只有一对实数 使5/21/202417练习练习1:判断正误,并简述理由。()()()()()()5/21/202418平平 面面 向向 量量 复复 习习2.设设AB=2(a+5b),BC=2a+8b,CD=3(a b),求证:求证:A、B、D 三点共线。三点共线。分析分析要证要证A、B、D三点共线,可证三点共线,可证 AB=BD关键是找到解:解:BD=BC+CD=2a+8b+3(a b)=a+5bAB=2 BD且且AB与与BD有有公共点公共点B A、B、D 三点共线三点共线AB BD5/21/202419- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省 高中数学 平面 向量 复习 课件 人教版 必修 ppt
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文