分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型嵌入式实验报告-ARM的AD接口实验.doc

  • 上传人:精****
  • 文档编号:2283709
  • 上传时间:2024-05-25
  • 格式:DOC
  • 页数:9
  • 大小:397.50KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整 word 嵌入式 实验 报告 ARM AD 接口
    资源描述:
    贵州大学实验报告 学院: 专业: 班级: 姓名 学号 实验组 实验时间 05.03 指导教师 余佩嘉 成绩 实验项目名称 ARM的A/D接口实验 实验目的 1.熟悉ARM本身自带的八路十位A/D控制器及相应寄存器。 2.编程实现ARM系统的A/D功能。 3.掌握带有A/D的CPU编程实现A/D功能的主要方法。 实验原理 1.A/D转换器 A/D转换器是模拟信号源和CPU之间联系的接口,它的任务是将连续变化的模拟信号转 换为数字信号,以便计算机和数字系统进行处理、存储、控制和显示。在工业控制和数据采集及许多其他领域中,A/D转换是不可缺少的。 A/D转换器有以下类型:逐位比较型、积分型、计数型、并行比较型、电压-频率型, 主要应根据使用场合的具体要求,按照转换速度、精度、价格、功能以及接口条件等因素来决定选择何种类型。常用的有以下两种: 1)双积分型的A/D转换器 双积分式也称二重积分式,其实质是测量和比较两个积分的时间,一个是对模拟输入电 压积分的时间T0,此时间往往是固定的;另一个是以充电后的电压为初值,对参考电源Vref反向积分,积分电容被放电至零所需的时间T1。模拟输入电压Vi与参考电压VRef之比,等于上述两个时间之比。由于VRef 、T0固定,而放电时间T1可以测出,因而可计算出模拟输入电压的大小(VRef与Vi符号相反)。 由于T0、VRef为已知的固定常数,因此反向积分时间T1与输入模拟电压Vi在T0时间内的平均值成正比。输入电压Vi愈高,VA愈大,T1就愈长。在T1开始时刻,控制逻辑同时打开计数器的控制门开始计数,直到积分器恢复到零电平时,计数停止。则计数器所计出的数字即正比于输入电压Vi在T0时间内的平均值,于是完成了一次A/D转换。 由于双积分型A/D转换是测量输入电压Vi在T。时间内的平均值,所以对常态干扰(串 模干扰)有很强的抑制作用,尤其对正负波形对称的干扰信号,抑制效果更好。 双积分型的A/D转换器电路简单,抗干扰能力强,精度高,这是突出的优点。但转换速 度比较慢,常用的A/D转换芯片的转换时间为毫秒级。例如12位的积分型A/D芯片 ADCETl2BC,其转换时间为lms。因此适用于模拟信号变化缓慢,采样速率要求较低,而对精度要求较高,或现场干扰较严重的场合。例如在数字电压表中常被采用。 2)逐次逼近型的A/D转换器 逐次逼近型(也称逐位比较式)的A/D转换器,应用比积分型更为广泛,其原理框图如图 3-10所示,主要由逐次逼近寄存器SAR、D/A转换器、比较器以及时序和控制逻辑等部分组成。它的实质是逐次把设定的SAR寄存器中的数字量经D/A转换后得到电压Vc与待转换模拟电压V。进行比较。比较时,先从SAR的最高位开始,逐次确定各位的数码应是“1”还是“0”,其工作过程如下: 转换前,先将SAR寄存器各位清零。转换开始时,控制逻辑电路先设定SAR寄存器的最 高位为“1”,其余位为“0”,此试探值经D/A转换成电压Vc,然后将Vc与模拟输入电压Vx比较。如果Vx≥Vc,说明SAR最高位的“1”应予保留;如果Vx<Vc,说明SAR该位应予清零。然后再对SAR寄存器的次高位置“1”,依上述方法进行D/A转换和比较。如此重复上述过程,直至确定SAR寄存器的最低位为止。过程结束后,状态线改变状态,表明已完成一次转换。最后,逐次逼近寄存器SAR中的内容就是与输入模拟量V相对应的二进制数字量。显然A/D转换器的位数N决定于SAR的位数和D/A的位数。图3-10(b)表示四位A/D转换器的逐次逼近过程。转换结果能否准确逼近模拟信号,主要取决于SAR和D/A的位数。位数越多,越能准确逼近模拟量,但转换所需的时间也越长。 逐次逼近式的A/D转换器的主要特点是: 转换速度较快,在1—100/μs以内,分辨率可以达18位,特别适用于工业控制系统。 转换时间固定,不随输入信号的变化而变化。抗干扰能力相对积分型的差。例如,对模拟输入信号采样过程中,若在采样时刻有一个干扰脉冲迭加在模拟信号上,则采样时,包括干扰信号在内,都被采样和转换为数字量,这就会造成较大的误差,所以有必要采取适当的滤波措施。 2.A/D转换的重要指标 1)分辨率(Resolution): 分辨率反映A/D转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对 应的模拟输入的电平值表示。n位A/D能反应1/2n满量程的模拟输入电平。由于分辨率直接与转换器的位数有关,所以一般也可简单地用数字量的位数来表示分辨率,即n位二进制数,最低位所具有的权值,就是它的分辨率。 值得注意的是,分辨率与精度是两个不同的概念,不要把两者相混淆。即使分辨率很高,也可能由于温度漂移、线性度等原因,而使其精度不够高。 2)精度(Accuracy) 精度有绝对精度(Absolute Accuracy)和相对精度(Relative Accuracy)两种表示方法。 ① 绝对误差 在一个转换器中,对应于一个数字量的实际模拟输入电压和理想的模拟输入电压之差并 非是一个常数。我们把它们之间的差的最大值,定义为“绝对误差”。通常以数字量的最小有效位(LSB)的分数值来表示绝对误差,例如:±1LSB等。绝对误差包括量化误差和其它所有误差。 ② 相对误差 是指整个转换范围内,任一数字量所对应的模拟输入量的实际值与理论值之差,用模拟 电压满量程的百分比表示。 例如,满量程为10V,10位A/D芯片,若其绝对精度为±1/2LSB,则其最小有效位的量 化单位:9.77mV,其绝对精度为=4.88mV,其相对精度为0.048%。 3)转换时间(Conversion Time) 转换时间是指完成一次A/D转换所需的时间,即由发出启动转换命令信号到转换结束信 号开始有效的时间间隔。 转换时间的倒数称为转换速率。例如AD570的转换时间为25us,其转换速率为40KHz。 4)电源灵敏度(power supply sensitivity) 电源灵敏度是指A/D转换芯片的供电电源的电压发生变化时,产生的转换误差。一般用 电源电压变化1%时相当的模拟量变化的百分数来表示。 5)量程 量程是指所能转换的模拟输入电压范围,分单极性、双极性两种类型。 例如,单极性 量程为0~+5V,0~+10V,0~+20V; 双极性 量程为-5~+5V,-10~+10V。 6)输出逻辑电平 多数A/D转换器的输出逻辑电平与TTL电平兼容。在考虑数字量输出与微处理的数据总 线接口时,应注意是否要三态逻辑输出,是否要对数据进行锁存等。 7)工作温度范围 由于温度会对比较器、运算放大器、电阻网络等产生影响,故只在一定的温度范围内才 能保证额定精度指标。一般A/D转换器的工作温度范围为(0~700C),军用品的工作温度范围为(-55~+1250C)。 3.ARM自带的十位A/D转换器 ARMS3C2410X芯片自带一个8路10位A/D转换器,最大转换率为500K,非线性度为正负1.5位,其转换时间可以通过下式计算:如果A/D使用的时钟为50MHz,预定标器的值为49,那么: A/D转换频率=50MHz(49+1)=1MHz 转换时间=1/(1MHz/5时钟周期)=1/200kHz=5us 注意:因为A/D转换器的最高时钟频率是2.5MHz,所以转换速率可达500kSPS 编程注意事项: 1. A/D转换的数据可以通过中断或查询的方式来访问,如果是用中断方式,全部的转换时间(从A/D转换的开始到数据读出)要更长,因为中断服务程序返回和数据的访问的原因。如果是查询方式则要检测ADCCON[15](转换结束标志位)来确定从ADCDAT寄存器读取的数据是否是最新的转换数据。 2. A/D转换开始的另一种方式是将ADCCON[1]置为1,这时只有有读转换数据的信号A/D转换就会同步开始。 与AD相关的寄存器主要是如下两个: ⑴ ADCCON:A/D转换控制寄存器。其地址和意义参见下表: ADCCON寄存器的第15位是转换结束标志位,为1时表示转换结束。第14位表示A/D 转换预定标器使能位,1表示该预定标器开启。第13-6位表示预定标器的数值,需要注意的是如果这里的值是N,则除数因式是(N+1)。第5-3位表示模拟输入通道选择位。第2位表示待用模式选择位。第1位是读使能 A/D转换开始位,第0位值1则A/D转换开始(如果第1位置1,则这位是无效的)。 4.AD转换器在开发平台的接法如下: 即前三路通过分压电位器接到3.3v电源上。 实验仪器 硬件:ARM嵌入式开发平台、PC机Pentium100以上、用于ARM920T的JTAG仿真器、 模拟电压信号源。 软件:PC机操作系统Win2000或WinXP、ARM ADS1.2集成开发环境、仿真器驱动程序、 超级终端通讯程序。 实验步骤 1.新建工程,将“Exp2 ARM A/D接口实验”种的文件添加到工程。 2.编写获取转换结果函数(main.c) 3.主函数(main.c) 实验内容 学习A/D接口原理,了解实现A/D系统对于系统的软件和硬件要求。阅读ARM芯片文档,掌握ARM的A/D相关寄存器的功能,熟悉ARM系统硬件的A/D相关接口。利用外部模拟信号编程实现ARM循环采集全部前3路通道,并且在超级终端上显示。 实验数据 实验总结 基本达到实验的要求,了解对ARN的A/D串口是如何工作的,以及了解实验原理。 熟悉ARM本身自带的八路十位A/D控制器及相应寄存器,掌握带有A/D的CPU编程实现A/D功能的主要方法,为今后嵌入式的学习打下一定的学习基础。 指导教师意见 签名: 年 月 日 注:各学院可根据教学需要对以上栏目进行增减。表格内容可根据内容扩充。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:嵌入式实验报告-ARM的AD接口实验.doc
    链接地址:https://www.zixin.com.cn/doc/2283709.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork