聚合物碳纳米管复合材料研究综述.doc
《聚合物碳纳米管复合材料研究综述.doc》由会员分享,可在线阅读,更多相关《聚合物碳纳米管复合材料研究综述.doc(8页珍藏版)》请在咨信网上搜索。
1、(完整word)聚合物碳纳米管复合材料研究综述 聚合物/碳纳米管复合材料研究综述摘 要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。关键词: 碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散Review of Research on Polymer /Carbon Nanotube Composite AbstractThe current carbon nanotube-fi
2、lled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewedSeveral common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborate
3、dFinally,the polymer /carbon nanotube in the study process and future research is analyzed and prospectedKey words: carbon nanotubes; percolation theory; composite; preparation; dispersion1. 引言自1991年日本科学家Iijima发现碳纳米管以来1,由于其优良的电学、磁学力学等性能,在介电材料、电极材料、纳米电子器件、复合材料等多方面等方面得到了广泛的应用2。通过特殊的加工工艺将碳纳米管填充到聚合物基体中来
4、制备使用性能优良的介电材料、导电材料、吸波材料、电磁屏蔽材料等复合材料成为人们关注的热点.由于碳纳米管有比较大的长径比和比表面积,在填充量很小的情况下,可以得到使用性能优良的聚合物/碳纳米管复合材料。虽然碳纳米管在高分子领域具有很大的应用前景,碳纳米管的管与管之间具有很强的范德华力和非常高的长径比3,因此碳纳米管一般都呈束状缠绕很难分开。CNTs 是既不溶于水又不溶于有机溶剂而悬浮液又易团聚的物质,这种难于分散的性质限制了其在许多领域的应用4。文章将从碳纳米管在常见的一些复合材料中的应用,以及常用的几种聚合物/碳纳米管复合材料的制备工艺和碳纳米管在聚合物中的分散方法等几个方面进行综述2。 聚合
5、物 / 碳纳米管高介电复合材料随着电子和信息工业的快速发展,介电性能优良的储能材料得到了广泛的应用.随着纳米技术的成熟,制备介电常数高、介电损耗低、加工性能优良的聚合物基纳米复合材料来满足市场需求成为行业关注的热点5。根据逾渗理论聚合物基体中掺入的导电粒子含量低于但接近逾渗阈值,则可得到高介电常数的复合材料6。将碳纳米管填充到聚合物基体中,将填充含量控制在逾渗值附近可以得到介电性能优良的复合材料。逾渗理论指出,当导电粒子的添加含量等于逾渗阈值时,会发生绝缘体-导体转变。当导电粒子的填充含量接近逾渗阈值时,聚合物复/导电体复合材料的介电常数将会得到大幅度的提高.所以可以通过控制导电粒子在聚合物中
6、的含量来提高复合材料的介电常数。Li等7将碳纳米管作为导电填料与PVDF复合后发现,复合材料的渗流阈值仅为3。8%,在室温及1 KZ下,复合材料的介电常数高达3600,这可归因于碳纳米管具有较长的长径比和较高的导电率; 北京化工大学党智敏等8研究了未改性MWNTs填充PVDF的介电性能,研究结果显示,复合材料的渗阈值仅为 1。61,在体积分数为2%时,为300,是PVDF的30倍且介电损耗低于0。4。因此,未经过化学处理的纯碳纳米管可以大幅度提高PVDF的介电性能。李淑琴等9对碳纳米管用三乙烯四胺进行改性,采用溶液浇铸法制备了改性前后MWNTs / PVDF复合薄膜,研究发现,改性MWNTs与
7、PVDF制备薄膜的介电常数高达3209,是未改性碳纳米管的2倍,并且分散性更好.3. 聚合物 / 碳纳米管导电复合材料相关研究表明,任意取向碳纳米管的电导率近似103 s/m,球状任意取向碳纳米管的电导率大约为50 s/m。在聚合物中添加碳纳米管,可以在保证材料柔韧性的同时,使复合材料的导电性能得到大幅度地提高.Potschke10在PC中添加含量为2%的多壁碳纳米管制备母粒,然后与PE熔融共混挤出,研究发现,当 MWNTs的体积分数为0.14%时,复合材料的导电率提高了7个数量级。Safadi11等用高速旋转法制备了PS/CNTs复合材料,研究发现,采用旋转速度为2200 r/min 时,M
8、WNTs在径向为45和135的方向上取向排列,材料的拉伸模量增加了2 倍,同时聚合物由绝缘体变成了导体.Jing12等采用原位聚合的方法制备了聚酰亚胺(PI) /MWNTs复合材料,研究表明,当碳纳米管的填充质量分数为0。15%时,复合材料的电导率提高了11个数量级。4. 聚合物 / 碳纳米管吸波材料随着电子信息工业的快速发展,电器产品得到了广泛的应用。由于电器产品在使用过程中会产生大量的电磁辐射,影响人们的身体健康,同时电磁辐射会泄露信息,使计算机等仪器无安全保障.作为电磁波发生源或受扰对象的电气设备往往以聚合物作为外壳材料,通常聚合物对电磁波几乎没有屏蔽作用,因此为了保护设备稳定和人体安全
9、,国内外研究者就改善聚合物的电磁屏蔽性能开展了大量研究。研究者通过研究不同碳纳米管添加含量下CNT/PP复合材料的电磁屏蔽机理,认为CNT基复合材料的屏蔽机理,主要为吸收损耗,其次才是反射损耗13.还有研究发现,反射损耗和吸收损耗会随着碳纳米管填充量的增加发生相互转换14。Liu 15等研究了碳纳米管填充量对PU/SWCNT复合材料电磁屏蔽性能的影响,研究发现,增加碳纳米管含量,在逾渗值附近复合材料的电磁屏蔽效能值SE会得到大幅度地提高。Jou16等采用化学气相沉积法和电弧放电法制备了两种不同性质的碳纳米管,然后分别填充到液晶高分子聚合物和三聚氰胺树脂中,研究表明,在碳纳米管填充量相同的情况下
10、,无论是液晶高分子聚合物和三聚氰胺树脂纳米复合材料,电磁屏蔽效能值SE值均随碳纳米管填充量的增加而不断增大。5。 碳纳米管在导热材料方面的应用随着信息电子工业的快速发展,需要生产大量的防腐蚀和导热性能良好的电子产品来满足市场需求。J. Hone17等发现碳纳米管是世界上导热性能最好的材料。碳纳米管通过超声波传递热量,传递速度为10000 s-1将碳纳米管最为填充材料和聚合物复合可以得到防腐蚀性和导热性良好的复合材料,在降低成本的同时,大大地提高了复合材料的导热系数。Cui18等用SiO2包裹改性的碳纳米管与环氧树脂复合发现: 当碳纳米管的质量分数为0。5%时,复合材料的热导率提高51。刘俊峰1
11、9等将碳纳米管进行酯化改性后填充到硅胶里面来制备导热材料,研究发现,在碳纳米管的质量分数为2时,导热硅胶的导热系数由原来的0。385 Wm-1k-1提高到0。725 Wm-1k1。6. 碳纳米管 / 聚合物复合材料的制备方法常见的制备聚合物/碳纳米管复合材料的方法有溶液共混法、熔融共混法、原位聚合法等。6.1. 溶液共混法溶液共混法是先将碳纳米管在适当的溶剂中通过超声等分散装置进行分散,然后加入聚合物,使碳纳米管在溶剂中和聚合物充分混合,最后通过一定的工艺设备得到聚合物/碳纳米管复合材料.但是超声等分散装置的长时间作用,会使碳纳米管断裂而变短,最终影响复合材料的使用性能.He20等将在酒精中超
12、声分散的多壁碳纳米管的甲苯溶液混合分散、机械搅拌24 h来达到成分均一,过滤溶剂后干燥模压,得到质量分数为1% 10%的复合材料,通过扫描电镜研究发现CNTs缠结打开,分散均匀。Li 等21以碳纳米管为导电体,与PVDF复合后发现,复合材料的渗流阈值仅为3。8%,在室温及1 KZ下,复合材料的介电常数高达3600,这可归因于碳纳米管具有较长的长径比和较高的导电率; 溶液共混法制备聚合物/碳纳米管复合材料,碳纳米管在聚合物中的分散性良好,但是由于溶液不能回收利用,对环境造成了很大的污染,同时也增大了成产成本.另外,溶剂也不能够从复合材料中完全地去除,使材料的使用性能大大降低.6。2熔融共混法熔融
13、共混是通过挤出、注塑等加工设备中较大的剪切作用和适宜的加工温度使碳纳米管与聚合物得到充分混合来制备聚合物/碳纳米管复合材料。浙江大学的李文春等22将多壁碳纳米管 (MWNTS) 和 PE-HD在Hakke转矩流变仪中熔融共混( 155 oC、15 min、70 r / min),然后热压制备矩形薄片试样。经过对质量分数为6的复合材料进行SEM观察,照片显示碳纳米管以聚集体形式分布在聚合物基体中,且存在聚集体之间的相互缠结。熔融共混法具有加工速度快、方便、没有溶剂残留、易于实现工业化生产,但是碳纳米管在聚合物中的分散性较差,使复合材料的使用性能降低。6。3 原位合成法通过诱导碳纳米管在聚合物基体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 聚合物 纳米 复合材料 研究 综述
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。