上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题.doc
《上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题.doc》由会员分享,可在线阅读,更多相关《上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题.doc(14页珍藏版)》请在咨信网上搜索。
上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题 上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题 年级: 姓名: - 14 - 上海市浦东新区沪新中学2019-2020学年高一数学下学期期中试题(含解析) 一.填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分. 1.已知角的终边经过点,则__________. 【答案】 【解析】 【分析】 求出点到坐标原点的距离,根据三角函数的定义,求出,即可求解. 【详解】设坐标原点为, . 故答案为: 【点睛】本题考查三角函数定义的应用,属于基础题. 2.函数的定义域为____________. 【答案】 【解析】 【分析】 根据函数解析式的限制条件,列出不等式,即可求解. 【详解】函数有意义需,解得, 所以函数的定义域为. 故答案为:. 【点睛】本题考查函数的定义域,注意对数函数性质的应用,属于基础题. 3.用弧度制表示所有与终边相同的角的集合是______________. 【答案】 【解析】 【分析】 根据角度和弧度关系,以及终边相同角的关系,即可求解. 【详解】与终边相同的角的集合是。 故答案为: 【点睛】本题考查角单位互化、终边相同角的集合表示,属于基础题. 4.函数,的反函数为_______________. 【答案】 【解析】 【分析】 先求出函数的值域,然后由函数解析式将用表示,即可得出结论. 【详解】函数,,, , 所以反函数为. 故答案为:. 【点睛】本题考查反函数的求法,要注意反函数的定义域不要遗漏,属于基础题. 5.已知,试用表示______________. 【答案】 【解析】 【分析】 根据已知,应用换底公式将所求的式子化为以为底的对数,再结合对数运算性质,即可求解. 【详解】. 故答案为:. 【点睛】本题考查对数的运算,掌握换底公式及对数运算性质是解题关键,属于基础题. 6. . 【答案】 【解析】 【分析】 根据两角差的正切公式,可直接求出结果. 【详解】. 故答案 【点睛】本题主要考查两角差的正切公式,熟记公式即可,属于常考题型. 7.方程的解集是______. 【答案】 【解析】 【分析】 对变形,再利用换元法转化成一元二次方程问题来求解即可. 【详解】, 即:,令, 则方程可化为,解得:或, 或 或 方程的解集是: 【点睛】本题考查了对数运算性质及转化思想,利用换元方法求解. 8.把化为的形式_________________. 【答案】 【解析】 【分析】 根据辅助角公式,即可求解. 【详解】 故答案为:. 【点睛】本题考查两角和差正弦公式的应用,熟记公式即可,属于基础题. 9.已知,,则实数的值的集合为___________. 【答案】 【解析】 【分析】 根据,建立的方程,求解即可. 【详解】, 整理得,解得或 所以的集合为. 故答案为:. 【点睛】本题考查同角间的三角函数关系应用,考查计算求解能力,属于基础题. 10.已知,化简:__________. 【答案】 【解析】 【分析】 根据二倍角公式,将被开方数化为完全平方数,结合的范围,即可求解. 【详解】 . 故答案为:. 【点睛】本题考查应用二倍角公式化简,熟练掌握三角函数公式及变形是解题关键,属于中档题. 11.已知的一个内角为,并且三边长满足关系:,则的面积为______________. 【答案】 【解析】 【分析】 根据三角形边角关系,可得所对的边为,由余弦定理建立的方程,求出,进而得到即可. 【详解】, 所对的边为, , 整理得,解得或,舍去), . 故答案为:. 【点睛】本题考查求三角形面积、余项定理解三角形,考查计算求解能力,属于中档题. 12.在中,已知,给出下列结论: ①由已知条件这一三角形被唯一确定; ②一定是一个钝角三角形; ③; ④若,则的面积是. 其中正确结论的序号是_____________. 【答案】②③ 【解析】 【分析】 由题可得,无法得到确定唯一的三角形;由“大边对大角”,利用余弦定理求得,即可判断三角形是否为钝角三角形;利用正弦定理的边角关系判断③;由求得,进而求出三角形面积即可 【详解】由,可得,即只知道三边的比例关系,无法确定唯一的三角形,故①错误; 则,即,即是钝角三角形,故②正确; 由正弦定理可得,,故③正确; 因为,则,,所以,故④错误; 故答案为:②③ 【点睛】本题考查正弦定理的应用,考查三角形的形状的判定,考查三角形面积公式的应用 二.选择题(本大题满分12分)本大题共有4题,每题都给出代号为A.B.C.D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分. 13.若,则点必在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】D 【解析】 【分析】 由范围,判断的正负,即可得出结论. 【详解】, 点在第四象限. 故选:D. 【点睛】本题考查三角函数值的符号,属于基础题. 14.化简所得的结果是( ) A. B. C. D. 【答案】C 【解析】 【分析】 利用诱导公式化简后,利用两角和的余弦函数化简求解即可. 【详解】诱导公式:,; ,; 余弦的两角和公式:, 故选:C. 【点睛】本小题主要考查运用诱导公式化简求值;两角和与差的余弦函数,属于基础题. 15.△中,若,则该三角形一定是( ) A. 等腰三角形但不是直角三角形 B. 直角三角形但不是等腰三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形 【答案】D 【解析】 【分析】 利用正弦定理边化角,再利用二倍角的正弦函数公式化简,即可确定三角形的形状. 【详解】由,得, ,或,即,或, 所以为等腰三角形或直角三角形. 故选:D. 【点睛】本题考查正弦定理、二倍角公式判断三角形的形状,属于基础题. 16.若函数是定义在上的减函数,又是锐角三角形的两个内角,则( ) A. B. C. D. 【答案】D 【解析】 【分析】 依题意只需判断各选项中自变量的大小,由已知可得,根据正弦函数的单调性,得出的大小关系,即可求解. 【详解】是锐角三角形的两个内角,, 在为增函数, , 又函数是定义在上的减函数, . 故选:D. 【点睛】本题考查抽象函数的函数值大小关系,利用函数的单调性,以及判断锐角三角形中角的三角函数大小是解题的关键,属于中档题. 三.解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤. 17.已知弓形的弦长为,对应的圆心角为,求此弓形的面积. 【答案】 【解析】 【分析】 根据余弦定理,求出扇形半径,进而求出扇形面积和面积,即可求解. 【详解】设扇形的半径为,在中,由余弦定理得, , , , 弓形的面积为. 【点睛】本题考查扇形的面积、余弦定理解三角形,熟记公式是解题的关键,属于基础题. 18.已知,求值: (1); (2)2. 【答案】(1);(2). 【解析】 【分析】 (1)根据已知可求出,将所求的式子化弦为切,即可求解; (2)引进分式,利用“1”的变化,将所求式子化为的齐次分式,化弦为切,即可求解. 【详解】. (1); (2)2 . 【点睛】本题考查利用诱导公式、同角间的三角函数关系求值,构造的齐次分式,化弦为切是解题的关键,属于基础题. 19.如图,为测量山高,选择水平地面上一点和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,求山高. 【答案】 【解析】 分析】 先在直角三角形中求出,然后用正弦定理求出,最后再在直角三角形中求得. 【详解】解:在中,, . 在中,, . 由正弦定理得即, . 在中,, 故山高是. 【点睛】本题考查解三角形的应用:测量高度,考查正弦定理. (1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角. (2)准确理解题意,分清已知条件与所求,画出示意图. (3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用. 20.已知,且,若,分别求与的值. 【答案】 【解析】 【分析】 由,求出,进而求出,利用,结合两角差的余弦,即可求出. 【详解】, 由解得或(舍去), ,, 又, , , 【点睛】本题考查三角函数求值问题,灵活运用三角恒等变换和同角间的三角函数关系是解题的关键,考查计算求解能力,属于中档题. 21.在中,角的对边分别为,的外接圆半径,且满足. (1)求角和边的大小; (2)求的面积的最大值. 【答案】(1);(2). 【解析】 【分析】 (1)将已知等式化简,结合两角和的正弦公式,求出,进而求出角,再由正弦定理,求出; (2)要使面积最大,只需求出最大,由余弦定理结合基本不等式,即可求出结论. 【详解】(1)由, 得, , , 的外接圆半径,由正弦定理可得, ; (2)根据余弦定理得, 当且仅当时,等号成立, , 所以的面积的最大值为. 【点睛】本题考查三角恒等变换、正弦定理、余弦定理解三角形,利用基本不等式求三角形面积最值,考查计算求解能力,属于中档题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 浦东新区 中学 2019 2020 学年 数学 学期 期中 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文