2021-2022学年高中数学-第三章-三角恒等变换章末测评课时分层作业新人教A版必修4.doc
《2021-2022学年高中数学-第三章-三角恒等变换章末测评课时分层作业新人教A版必修4.doc》由会员分享,可在线阅读,更多相关《2021-2022学年高中数学-第三章-三角恒等变换章末测评课时分层作业新人教A版必修4.doc(13页珍藏版)》请在咨信网上搜索。
2021-2022学年高中数学 第三章 三角恒等变换章末测评课时分层作业新人教A版必修4 2021-2022学年高中数学 第三章 三角恒等变换章末测评课时分层作业新人教A版必修4 年级: 姓名: 章末综合测评(三) (时间120分钟,满分150分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.cos275°+cos215°+cos 75°cos 15°的值等于( ) A. B. C. D.1+ C [∵cos 75°=sin 15°, ∴原式=sin215°+cos215°+sin 15°cos 15° =1+sin 30°=1+×=.] 2.化简cos2-sin2得( ) A.sin 2α B.-sin 2α C.cos 2α D.-cos 2α A [原式=cos 2 =cos=sin 2α.] 3.若sin x·tan x<0,则等于( ) A.cos x B.-cos x C.sin x D.-sin x B [因为sin x·tan x<0, 所以x为第二、三象限角,所以cos x<0, 所以==|cos x| =-cos x.] 4.若tan α=2,则2cos 2α+3sin 2α-sin2α的值为( ) A. B.- C.5 D.- A [2cos 2α+3sin 2α-sin2α=2cos2α+6sin αcos α-3sin2α===.故选A.] 5.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( ) A.- B. C. D.- A [tan 2α=tan[(α+β)+(α-β)] ===-.] 6.函数f(x)=sin x-cos 的值域为( ) A.[-2,2] B.[-,] C.[-1,1] D. B [f(x)=sin x- =sin x-cos x+sin x = =sin, ∵x∈R,∴x-∈R, ∴f(x)∈[-,].] 7.在△ABC中,已知tan=sin C,则△ABC的形状为( ) A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 C [在△ABC中,tan=sin C=sin(A+B)=2sincos,∴2cos2=1, ∴cos(A+B)=0,从而A+B=,即△ABC为直角三角形.] 8.函数f(x)=(1-cos 2x)cos2x,x∈R,设f(x)的最大值是A,最小正周期为T,则f(AT)的值等于( ) A. B. C.1 D.0 B [原式=-cos 4x,所以最大值是A=,T=,所以f(AT)=f=.] 9.已知tan α和tan是方程ax2+bx+c=0的两根,则a,b,c的关系是( ) A.b=a+c B.2b=a+c C.c=a+b D.c=ab C [由根与系数的关系得: tan α+tan=-, tan αtan=, tan = ==1,得c=a+b.] 10.已知向量a=,b=(4,4cos α-),若a⊥b,则sin等于( ) A.- B.- C. D. B [∵a⊥b, ∴a·b=4sin+4cos α-=0, 即2sin α+6cos α=, 即sin α+cos α=, sin =sin αcos+cos αsin =-sin α-cos α =-(sin α+cos α) =-×=-.] 11.若ω≠0,函数f(x)=图象的相邻两个对称中心之间的距离是,则ω的值是( ) A. B.±2 C.2 D.±1 D [f(x)== =tan, 由题意知函数f(x)的周期为×2=π, 所以=π,所以ω=±1.] 12.已知0<β<α<,点P(1,4)为角α的终边上一点,且sin αsin+cos αcos=,则角β=( ) A. B. C. D. D [∵P(1,4),∴|OP|=7,∴sin α=,cos α=. 又sin αcos β-cos αsin β=,∴sin(α-β)=. ∵0<β<α<,∴0<α-β<, ∴cos(α-β)=,∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =×-×=. ∵0<β<,∴β=.] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知2tan α·sin α=3,-<α<0,则cos的值是 . 0 [∵2tan α·sin α=3, ∴2·sin α=3, ∴2sin2α=3cos α, ∴2(1-cos2α)=3cos α, 即2cos2α+3cos α-2=0, 解得cos α=或cos α=-2(舍). 又α∈,∴α=-, ∴cos=cos=0.] 14.将函数y=cos 2x的图象向右平移个单位,得到函数y=f(x)sin x,则f(x)的表达式为 . 2cos x [∵y=cos 2x,向右平移个单位, y=cos=cos=sin 2x=f(x)·sin x, ∴f(x)==2cos x,故答案为f(x)=2cos x.] 15.= . -4 [原式= = = ===-4.] 16.关于函数f(x)=cos+cos,有下列说法: ①y=f(x)的最大值为; ②y=f(x)是以π为最小正周期的周期函数; ③y=f(x)在区间上单调递减; ④将函数y=cos 2x的图象向左平移个单位后,将与已知函数的图象重合. 其中正确说法的序号是 .(把你认为正确的说法的序号都填上) ①②③ [∵f(x)=cos+cos =cos-sin =cos, ∴f(x)max=,即①正确. T===π,即②正确. f(x)的递减区间为2kπ≤2x-≤2kπ+π(k∈Z), 即kπ+≤x≤kπ+(k∈Z), k=0时,≤x≤,即③正确. 将函数y=cos 2x向左平移个单位得 y=cos≠f(x), 所以④不正确.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知cos θ=,θ∈(π,2π),求sin以及tan的值. [解] 因为cos θ=,θ∈(π,2π), 所以sin θ=-,tan θ=-, 所以sin =sin θcos-cos θsin =-×-×=-, tan= ==. 18.(本小题满分12分)已知sin -2cos =0. (1)求tan x的值; (2)求的值. [解] (1)∵sin -2cos =0, 则cos ≠0, ∴tan =2 ∴tan x===-. (2)原式= = ===. 19.(本小题满分12分)已知cos=-,sin=且α∈,β∈. 求:(1)cos的值; (2)tan(α+β)的值. [解] (1)∵<α<π,0<β<, ∴<α-<π,-<-β<. ∴sin==, cos==. ∴cos=cos =coscos+sinsin =×+× =-. (2)∵<<, ∴sin==. ∴tan==-. ∴tan(α+β)==. 20.(本小题满分12分)已知向量m=(cos x,sin x),n=(2+sin x,2-cos x),函数f(x)=m·n,x∈R. (1)求函数f(x)的最大值. (2)若x∈且f(x)=1,求cos的值. [解] (1)因为m=(cos x,sin x),n=(2+sin x,2-cos x), 所以f(x)=m·n=cos x(2+sin x)+sin x(2-cos x) =2(sin x+cos x)=4sin, 所以函数f(x)的最大值为4. (2)因为f(x)=4sin=1, 所以sin=, 因为x∈, 所以x+∈, 所以cos=-, 所以cos=cos =cos-sin =-×-×=-. 21.(本小题满分12分)已知函数f(x)=sin+sin+cos x. (1)求函数f(x)的最大值; (2)若f=-,<x<时,求的值. [解] f(x)=sin xcos +cosxsin +sinxcos -cosxsin +cos x =2sin xcos +cos x =sin x+cos x = sin, ∴f(x)的最大值为. (2)f=sin, ∴sin=-,sin=-,sin x-cos x =-, ∴sin x-cos x=-两边平方得1-2sin xcos x=, ∴2sin xcos x=, ∴(sin x+cos x)2=1+2sin xcos x=,sin x+cos x= sin, 当<x<,<x+<2π, sin x+cos x<0,∴sin x+cos x=-, = = ==. 22.(本小题满分12分)如图,矩形ABCD的长AD=2,宽AB=1,A,D两点分别在x,y轴的正半轴上移动,B,C两点在第一象限,求OB2的最大值. [解] 过点B作BH⊥OA,垂足为H. 设∠OAD=θ,则∠BAH=-θ, OA=2cos θ, BH=sin=cos θ, AH=cos=sin θ, ∴B(2cos θ+sin θ,cos θ), OB2=(2cos θ+sin θ)2+cos2θ =7+6cos 2θ+2sin 2θ=7+4sin. 由0<θ<, 知<2θ+<, 所以当θ=时,OB2取得最大值7+4.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 高中数学 第三 三角 恒等 变换 测评 课时 分层 作业 新人 必修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2021-2022学年高中数学-第三章-三角恒等变换章末测评课时分层作业新人教A版必修4.doc
链接地址:https://www.zixin.com.cn/doc/2270955.html
链接地址:https://www.zixin.com.cn/doc/2270955.html