高等代数(北大版第三版)习题答案II.doc
《高等代数(北大版第三版)习题答案II.doc》由会员分享,可在线阅读,更多相关《高等代数(北大版第三版)习题答案II.doc(95页珍藏版)》请在咨信网上搜索。
1、高等代数(北大第三版)答案目录第一章 多项式 第二章 行列式 第三章 线性方程组第四章 矩阵第五章 二次型 第六章 线性空间第七章 线性变换第八章 矩阵第九章 欧氏空间第十章 双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢! 12设为一个级实对称矩阵,且,证明:必存在实维向量,使。证 因为,于是,所以,且不是正定矩阵。故必存在非退化线性替换使 ,且在规范形中必含带负号的平方项。于是只要在中,令则可得一线性方程组 ,由于,故可得唯一组非零解使 ,即证存在,使。 13如果都是阶正定矩阵,证明:也是正定矩阵。 证 因为为正定矩阵,所以为正定二次型,且 , ,因此 ,于是必为正定二
2、次型,从而为正定矩阵。 14证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数秩,则。即 , 若令 ,则可得非零解使。这与所给条件矛盾,故。充分性。由,知 ,故有,即证二次型半正定。 15证明:是半正定的。 证 ( ) 。可见:1) 当不全相等时 。2) 当时 。故原二次型是半正定的。 16设是一实二次型,若有实维向量使 , 。证明:必存在实维向量使。 设的秩为,作非退化线性替换将原二次型化为标准型 ,其中为1或-1。由已知,必存在两个向量使 和 ,故标准型中的系数不可能全为1,也不可能全为-1。不妨设有个1,个-1,且,即 ,这时与存在三种可能
3、: , , 下面仅讨论的情形,其他类似可证。 令, , ,则由可求得非零向量使 ,即证。17是一个实矩阵,证明: 。证 由于的充分条件是与为同解方程组,故只要证明与同解即可。事实上 ,即证与同解,故 。 注 该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。一、 补充题参考解答1 用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。解 1)作非退化线性替换 ,即,则原二次型的标准形为 ,且替换矩阵 ,使 ,其中 。2)若 , ,则 ,于是当为奇数时,作变换 ,则 ,且当时,得非退化替换矩阵为 ,当时,得非退化替换矩阵为 ,故当为奇数时,都
4、有 。 当为偶数时,作非退化线性替换 ,则 ,于是当时,得非退化替换矩阵为 ,于是当时,得非退化替换矩阵为 ,故当为偶数时,都有 。3) 由配方法可得 ,于是可令 ,则非退化的线性替换为 ,且原二次型的标准形为 ,相应的替换矩阵为 ,又因为 ,所以 。4) 令 ,则 。由于 ,则 原式 ,其中所作非退化的线性替换为 ,故非退化的替换矩阵为 。又 ,所以 。2 设实二次型 ,证明:的秩等于矩阵 的秩。 证 设,因 ,下面只需证明即可。由于,故存在非退化矩阵使 或 ,从而 ,令 ,则 。由于是正定的,因此它的级顺序主子式,从而的秩为。即证。3 设 。其中是的一次齐次式,证明:的正惯性指数,负惯性指
5、数。 证 设 ,的正惯性指数为,秩为,则存在非退化线性替换 ,使得 。下面证明。采用反证法。设,考虑线性方程组 ,该方程组含个方程,小于未知量的个数,故它必有非零解,于是 ,上式要成立,必有 , ,这就是说,对于这组非零数,有 , ,这与线性替换的系数矩阵非退化的条件矛盾。所以 。 同理可证负惯性指数,即证。4 设 是一对称矩阵,且,证明:存在使,其中表示一个级数与相同的矩阵。 证 只要令,则 ,注意到 , ,则有 。即证。5 设是反对称矩阵,证明:合同于矩阵 。 证 采用归纳法。当时,合同于,结论成立。下面设为非零反对称矩阵。 当时 ,故与合同,结论成立。 假设时结论成立,今考察的情形。这时
6、 ,如果最后一行(列)元素全为零,则由归纳假设,结论已证。若不然,经过行列的同时对换,不妨设,并将最后一行和最后一列都乘以,则可化成 ,再将最后两行两列的其他非零元化成零,则有 ,由归纳假设知 与 合同,从而合同于矩阵 ,再对上面矩阵作行交换和列交换,便知结论对级矩阵也成立,即证。6 设是阶实对称矩阵,证明:存在一正实数,使对任一个实维向量都有 。证 因为 ,令,则 。利用可得 ,其中,即证。 7主对角线上全是1的上三角矩阵称为特殊上三角矩阵。1)设是一对称矩阵,为特殊上三角矩阵,而,证明:与的对应顺序主子式有相同的值;2)证明:如果对称矩阵的顺序主子式全不为零,那么一定有一特殊上三角矩阵使成
7、对角形;3)利用以上结果证明:如果矩阵的顺序主子式全大于零,则是正定二次型。证 1)采用归纳法。当时,设 , ,则 。考虑的两个顺序主子式:的一阶顺序主子式为,而二阶顺序主子式为 ,与的各阶顺序主子式相同,故此时结论成立。归纳假设结论对阶矩阵成立,今考察阶矩阵,将写成分块矩阵 , ,其中为特殊上三角矩阵。于是 。由归纳假设,的一切阶的顺序主子式,即的顺序主子式与的顺序主子式有相同的值,而的阶顺序主子式就是,由 ,知的阶顺序主子式也与的阶顺序主子式相等,即证。 2)设阶对称矩阵,因,同时对的第一行和第一列进行相同的第三种初等变换,可以化成对称矩阵 ,于是由1)知,从而,再对进行类似的初等变换,使
8、矩阵的第二行和第二列中除外其余都化成零;如此继续下去,经过若干次行列同时进行的第三种初等变换,便可以将化成对角形 。由于每进行一次行、列的第三种初等变换,相当于右乘一个上三角形阵,左乘一个下三角形阵,而上三角形阵之积仍为上三角形阵,故存在,使,命题得证。 3)由2)知,存在使 。又由1)知的所有顺序主子式与的所有顺序主子式有相同的值,故 , ,所以。 ,所以 ,因是非退化线性替换,且 ,由于都大于零,故是正定的。 8。证明:1)如果 是正定二次型,那么 是负定二次型; 2)如果是正定矩阵,那么 ,这里是的阶顺序主子式; 3)如果是正定矩阵,那么 。 4)如果是阶实可逆矩阵,那么 。 证 1)作
9、变换,即 ,则 。因为是正定矩阵,所以是负定二次型。 2)为正定矩阵,故对应的阶矩阵也是正定矩阵,由1)知 是负定二次型。注意到 ,又因,所以 ,当时,有 ,综上有,即证。 3)由2)得 。 4)作非退化的线性替换,则为正定二次型,所以是正定矩阵,且 ,再由3)便得 。9.证明:实对称矩阵是半正定的充分必要条件是的一切主子式全大于或等于零(所谓阶主子式,是指形为 的级子式,其中)。证 必要性。取的任一个阶主子式相应的矩阵 ,对应的二次型为 ,令,代入,得 ,故存在非退化矩阵使 ,其中。故 。充分性。设的主子式全大于或等于零,任取的第个顺序主子式相应的矩阵 ,作 ,由行列式性质,得 ,其中是中一
10、切阶主子式的和,由题设,的一切阶主子式,所以。故当时,有 ,即当时,是正定矩阵。假若不是半正定矩阵,则存在一非零向量,使。于是令 ,则 ,这与时为正定矩阵矛盾,故为半正定矩阵。第六章 线性空间1.设证明:。证 任取由得所以即证。又因故。再证第二式,任取或但因此无论哪 一种情形,都有此即。但所以。2.证明,。证 则在后一情形,于是所以,由此得。反之,若,则 在前一情形,因此故得在后一情形,因而,得故于是。若。在前一情形X, 。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n(n1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A是一个nn实数矩阵,A的
11、实系数多项式f(A)的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;5) 全体实数的二元数列,对于下面定义的运算: 6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: ;7) 集合与加法同6),数量乘法定义为:;8) 全体正实数r,加法与数量乘法定义为:,;解 1)否。因两个n次多项式相加不一定是n次多项式,例如 。2)令V=f(A)|f(x)为实数多项式,A是nn实矩阵因为 f(x)+g(x)=h(x),kf(x)=d(x)所以 f(A)+g(A)=h(A),kf(A
12、)=d(A)由于矩阵对加法和数量乘法满足线性空间定义的18条,故v构成线性空间。 3)矩阵的加法和和数量乘法满足线性空间定义的18条性质,只需证明对称矩阵(上三角矩阵,反对称矩阵)对加法与数量乘法是否封闭即可。下面仅对反对称矩阵证明: 当A,B为反对称矩阵,k为任意一实数时,有 ,A+B仍是反对称矩阵。 ,所以kA是反对称矩阵。故反对称矩阵的全体构成线性空间。4)否。例如以已知向量为对角线的任意两个向量的和不属于这个集合。5)不难验证,对于加法,交换律,结合律满足,(0,0)是零元,任意(a,b)的负元是(-a,-b)。对于数乘:即。,即,所以,所给集合构成线性空间。6)否,因为。7)否,因为
13、,所给集合不满足线性空间的定义。8)显然所给集合对定义的加法和数量乘法都是封闭的,满足所以,所给集合构成线性空间。4 在线性空间中,证明:1) 2)。证 1)。2)因为。5 证明:在实函数空间中,1,式线性相关的。证 因为,所以1,式线性相关的。6 如果是线性空间中三个互素的多项式,但其中任意两个都不互素,那么他们线性无关。证 若有不全为零的数使,不妨设则,这说明的公因式也是的因式,即有非常数的公因式,这与三者互素矛盾,所以线性无关。7 在中,求向量在基下的坐标。设1);2)。解 1)设有线性关系,则,可得在基下的坐标为。2)设有线性关系,则,可得在基下的坐标为。8求下列线性空间的维数于一组基
14、:1)数域P上的空间P;2)P中全体对称(反对称,上三角)矩阵作成的数域P上的空间;3)第3题8)中的空间;4)实数域上由矩阵A的全体实系数多项式组成的空间,其中A=。解 1)的基是且。2) i)令,即其余元素均为零,则 是对称矩阵所成线性空间 的一组基,所以是维的。ii)令,即其余元素均为零,则是反对称矩阵所成线性空间的一组基, 所以它是维的。iii) 是上三角阵所成线性空间的一组基,所以它是维的。3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数,可经2线性表出,即.,所以此线性空间是一维的,且2是它的一组基。4)因为,所以,于是, 而。9.在中,求由基,到基的过渡矩阵
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 代数 北大 第三 习题 答案 II
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。