相交线与平行线知识点.doc
《相交线与平行线知识点.doc》由会员分享,可在线阅读,更多相关《相交线与平行线知识点.doc(3页珍藏版)》请在咨信网上搜索。
第五章《相交线与平行线》知识点 1. 相交线 同一平面中,两条直线的位置有两种情况: 相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4; 邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。像1和2这样的角我们称他们互为邻补角; 对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角; 1和2互补,2和3互补,因为同角的补角相等,所以1=3。 所以,对顶角相等 垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。 垂线相关的基本性质: (1) 经过一点有且只有一条直线垂直于已知直线; (2) 连接直线外一点与直线上各点的所有线段中,垂线段最短; (3) 从直线外一点到直线的垂线段的长度,叫做点到直线的距离。 2.平行线:在同一个平面内永不相交的两条直线叫做平行线。 平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。 3.同一个平面中的三条直线关系: 三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。 (1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决; (2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系: *同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角; *内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角; *同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角; 两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系: 两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等 两直线平行,被第三条直线所截,同旁内角互补。 平行线判定定理: 平行线判定定理1:同位角相等,两直线平行平行线判定定理2:内错角相等,两直线平行 平行线判定定理3:同旁内角互补,两直线平行 平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行 (3)有三个交点 (4)没有交点: 第六章《平面直角坐标系》知识点 一、有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b); 2、注意:a、b的先后顺序对位置的影响。 二、平面直角坐标系 1、、平行于坐标轴的直线的点的坐标特点: 平行于x轴(或横轴)的直线上的点的纵坐标相同; 平行于y轴(或纵轴)的直线上的点的横坐标相同。 2、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 3、与坐标轴、原点对称的点的坐标特点: 关于x轴对称的点的横坐标相同,纵坐标互为相反数 关于y轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 4、特殊位置点的特殊坐标: 坐标轴上 点P(x,y) 连线平行于 坐标轴的点 点P(x,y)在各象限 的坐标特点 象限角平分线上 的点 X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x>0 y>0 x<0 y>0 x<0 y<0 x>0 y<0 (m,m) (m,-m) 5、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: • 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; P(x,y) P(x,y-a) P(x-a,y) P(x+a,y) P(x,y+a) 向上平移a个单位长度 向下平移a个单位长度 向右平移a个单位长度 向左平移a个单位长度 • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 6、用坐标表示平移:见下图 第七章《三角形》知识点 一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角. 3.三角形中的三种重要线段 三角形的角平分线、中线、高线是三角形中的三种重要线段. (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线. ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部. ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点. ②画三角形中线时只需连结顶点及对边的中点即可. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段 ②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高. (二)三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 (三)三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 三角形内角和性质的推理方法有多种,常见的有以下几种: (四)三角形的内角 结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180° (1)构造平角 ①可过A点作MN∥BC(如图) ②可过一边上任一点,作另两边的平行线(如图) (2)构造邻补角,可延长任一边得 邻补角(如图) 构造同旁内角,过任一顶点作射线平行于对边(如图) 结论2:在直角三角形中,两个锐角互余.表示: 如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°) 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. (五)三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角, 这两个角为对顶角,大小相等. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. 如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补 3.外角个数 过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角. (六)多边形 ①多边形的对角线条对角线 ②n边形的内角和为(n-2)×180° ③多边形的外角和为360°- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相交 平行线 知识点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文