《回归分析的基本思想及其初步应用》.ppt
《《回归分析的基本思想及其初步应用》.ppt》由会员分享,可在线阅读,更多相关《《回归分析的基本思想及其初步应用》.ppt(41页珍藏版)》请在咨信网上搜索。
1、回归分析的基本思想及其初步应用高二数学 选修2-3 第三章 统计案例2024/5/21 周二1必修3(第二章 统计)知识结构 收集数据(随机抽样)整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系 用样本的频率分布估计总体分布 用样本数字特征估计总体数字特征线性回归分析2024/5/21 周二21、两个变量的关系不相关相关关系函数关系线性相关非线性相关问题1:现实生活中两个变量间的关系有哪些呢?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。2024/5/21 周二3思考:相关关系与函数关系有怎样的不同?函数关系中的两
2、个变量间是一种确定性关系相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况2024/5/21 周二4问题2:对于线性相关的两个变量用什么方法来刻划之间的关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:2024/5/21 周二5回归直线必过样本点的中心2024/5/21 周二63、回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.2024/5/21 周二7回归分析知识结构图问题背景分析问题背景分析线性回归模型线性回归模型两个变量线性相关两个变量线性相关最小二
3、乘法最小二乘法两个变量非线性相关两个变量非线性相关非线性回归模型非线性回归模型残差分析残差分析散点图散点图应用应用注:虚线表示高中阶段不涉及的关系2024/5/21 周二8 比数学3中“回归”增加的内容数学统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程ybxa4.用回归直线方程解决应用问题选修2-3统计案例5.引入线性回归模型ybxae6.了解模型中随机误差项e产生的原因7.了解相关指数 R2 和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果2024/5/21 周二9教学情境设计问题一:结合例1得出线性回归模型及随
4、机误差。并且区分函数模型和回归模型。问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?问题四:结合例1思考:用回归方程预报体重时应注意什么?问题五:归纳建立回归模型的基本步骤。问题六:若两个变量呈现非线性关系,如何解决?(分析例2)2024/5/21 周二10例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。5943616454505748体重/kg170155165175170157165165身
5、高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2024/5/21 周二112.回归方程:回归方程:探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为答:用这个回归方程不能给出每个身高为172
6、cm的女大的女大学生的体重的预测值,只能给出她们平均体重的估计值。学生的体重的预测值,只能给出她们平均体重的估计值。2024/5/21 周二12由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:其中a和b为模型的未知参数,e称为随机误差.2024/5/21 周二13函数模型与“回归模型”的关系函数模型:因变量y完全由自变量x确定回归模型:预报变量y完全由解释变量x和随机误差e确定2024/5/21 周二14注:e 产生的主要原因:(1)所用确定性函数不恰当;(2)忽略了某些因素的影响;(3)观测误差。思考:产生随机误差项e的原因是什么?2024/
7、5/21 周二15问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?结合例结合例1除了身高影响体重外的其他因素是不可测量的,除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。有用,因此在此我们引入残差概念。e=y-
8、(bx+a)2024/5/21 周二16随机误差随机误差e的估计量的估计量样本点:样本点:相应的随机误差为:相应的随机误差为:随机误差的估计值为:随机误差的估计值为:称为相应于点称为相应于点 的的残差残差.的估计量的估计量为为称为称为残差平方和残差平方和.2024/5/21 周二17问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。2024/5/21 周二18残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系,常用于调查数据错误.横轴为解释变量:可以考察
9、残差与解释变量的关系,常用于研究模型是否有改进的余地.作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域.2024/5/21 周二19下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.3822024/5/21 周二202024/5/21 周二21残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中
10、的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。2024/5/21 周二22误差与残差,这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以
11、衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差与随机误差。其中,系统误差与测量方案有关,通过改进测量方案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免。残差与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。2024/5/21 周二23 显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效的值越大,说明残差平方和越小,也就是说模型拟合效果越好。果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。表示解析变量对预报变量变化的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归分析的基本思想及其初步应用 回归 分析 基本 思想 及其 初步 应用
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。