高三理科数学培养讲义:第2部分-专题2-第3讲-等差数列.doc
《高三理科数学培养讲义:第2部分-专题2-第3讲-等差数列.doc》由会员分享,可在线阅读,更多相关《高三理科数学培养讲义:第2部分-专题2-第3讲-等差数列.doc(14页珍藏版)》请在咨信网上搜索。
第3讲 等差数列、等比数列 高考统计·定方向 热点题型 真题统计 题型1:等差(比)数列的基本运算 2018全国卷ⅠT4;2018全国卷ⅡT17; 2018全国卷ⅢT17;2017全国卷ⅠT4; 2017全国卷ⅢT9;2017全国卷ⅢT14; 2016全国卷ⅠT3 题型2:等差(比)数列的基本性质 2016全国卷ⅠT15; 2015全国卷ⅡT4 题型3:等差(比)数列的判断与证明 2016全国卷ⅢT17;2014全国卷ⅠT17;2014全国卷ⅡT17 命题规律 分析近五年全国卷发现高考命题有以下规律: 1.以等差(比)数列为载体,考查基本量的运算及相应数列的性质; 2.若以解答题出现在第17题第一问,若以客观题考查,难度中等的题目较多,有时也出现在T12或T16,难度偏大. 题型1 等差(比)数列的基本运算 ■核心知识储备· 1.等差数列的通项公式及前n项和公式 an=a1+(n-1)d;an=am+(n-m)d; Sn==na1+d. 2.等比数列的通项公式及前n项和公式 an=a1qn-1(q≠0); an=am·qn-m(q≠0); Sn==(q≠1),Sn=na1(q=1). ■高考考法示例· 【例1】 (1)(2018·唐山市期末)已知Sn为等差数列{an}的前n项和,若S5=10,S8=40,则{an}的公差为( ) A.1 B.2 C.3 D.4 (2)设等比数列{an}的前n项和为Sn.若S3,S9,S6成等差数列,且a8=3,则a5的值为________. (1)B (2) -6 [(1)设等差数列{an}的公差为d, 由题意得整理得 解得选B. (2)设等比数列{an}的公比为q. ∵S3,S9,S6成等差数列,∴2S9=S3+S6,且q≠1. ∴=+, 即2q6-q3-1=0,∴q3=-或q3=1(舍去). ∵a8=3,∴a5===-6.] 【教师备选】 (1)设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2-Sn=36,则n=( ) A.5 B.6 C.7 D.8 (2)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是________. (1)D (2)4 [(1)法一:由题意知,Sn=na1+d=n+n(n-1)=n2,Sn+2=(n+2)2,由Sn+2-Sn=36,得(n+2)2-n2=4n+4=36,所以n=8. 法二:Sn+2-Sn=an+1+an+2=2a1+(2n+1)d=2+2(2n+1)=36,解得n=8.所以选D. (2)设公比为q(q≠0),∵a2=1,则由a8=a6+2a4,得q6=q4+2q2,即q4-q2-2=0,解得q2=2, ∴a6=a2q4=4.] [方法归纳] 等差(比)数列基本运算的解题途径 (1)设基本量:首项a1和公差d(公比q). (2)列、解方程组:把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体代换,以减少运算量. ■对点即时训练· 1.已知数列{an}满足a1=15,且3an+1=3an-2.若ak·ak+1<0,则正整数k等于( ) A.21 B.22 C.23 D.24 C [3an+1=3an-2⇒an+1=an-⇒{an}是等差数列,则an=-n.∵ak+1·ak<0,∴<0, ∴<k<,又∵k∈N*,∴k=23.] 2.已知正项数列{an}满足a-2a-an+1an=0,设bn=log2,则数列{bn}的前n项和为( ) A.n B. C. D. C [由a-2a-an+1an=0,可得(an+1+an)(an+1-2an)=0, 又an>0,∴=2,∴an+1=a12n,∴bn=log2=log22n=n. ∴数列{bn}的前n项和为,故选C.] 3.中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤 B.184斤 C.191斤 D.201斤 B [用a1,a2,…,a8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a1,a2,…,a8是公差为17的等差数列,且这8项的和为996,∴8a1+×17=996,解得a1=65. ∴a8=65+7×17=184.选B.] 题型2 等差(比)数列的基本性质 ■核心知识储备· 1.等差、等比数列的性质 等差数列 等比数列 性质 (1)若m,n,p,q∈N*,且m+n=p+q,则am+an=ap+aq; (2)an=am+(n-m)d; (3)Sm,S2m-Sm,S3m-S2m,…仍成等差数列 (1)若m,n,p,q∈N*,且m+n=p+q,则am·an=ap·aq; (2)an=amqn-m; (3)Sm,S2m-Sm,S3m-S2m,…仍成等比数列(q≠-1) 2.关于非零等差数列奇数项与偶数项的性质 (1)若项数为2n,则S偶-S奇=nd; (2)若项数为2n-1,则S奇=nan, S奇-S偶=an; (3)两个等差数列{an}、{bn}的前n项和Sn、Tn之间的关系为=. ■高考考法示例· 【例2】 (1)在等比数列{an}中,a3,a15是方程x2-7x+12=0的两根,则的值为( ) A.2 B.4 C.±2 D.±4 (2)(2018·武威市二模)已知等差数列{an},{bn}的前n项和分别为Sn,Tn,若对于任意的自然数n,都有=,则+=( ) A. B. C. D. (3)在等差数列{an}中,<-1,若它的前n项和Sn有最大值,则当Sn>0时, n的最大值为( ) A.11 B.12 C.13 D.14 (1)A (2)A (3)A [(1)∵a3,a15是方程x2-7x+12=0的两根,∴a3a15=12,a3+a15=7, ∵{an}为等比数列,又a3,a9,a15同号, ∴a9>0,∴a9==2, ∴==a9=2.故选A. (2)+=+======,故选A. (3)数列{an}为等差数列,若<-1,则<0,可得d<0.∴a6>0,a7+a6<0,a7<0,∴a1+a11=2a6>0,S11>0,a1+a12=a7+a6<0,S12<0,则当Sn>0时,n的最大值为11.故选A.] 【教师备选】 (1)(2018·南充市综合测试一)公差不为0的等差数列{an}的部分项a,a,a,…构成等比数列{akn},且k1=1,k2=2,k3=6,则k4为( ) A.20 B.22 C.24 D.28 (2)(2018·浙江高考)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( ) A.a1<a3,a2<a4 B.a1>a3,a2<a4 C.a1<a3,a2>a4 D.a1>a3,a2>a4 (1)B (2)B [(1)设等差数列{an}的公差为d,∵a1,a2,a6成等比数列,∴a=a1·a6,即(a1+d)2=a1·(a1+5d), ∴d=3a1,∴a2=4a1,所以等比数列a,a,a,…,的公比q=4,∴a=a1·q3=a1·43=64a1, 又a=a1+(k4-1)·d=a1+(k4-1)·(3a1), ∴a1+(k4-1)·(3a1)=64a1,a1≠0,∴3k4-2=64, ∴k4=22,故选B. (2)构造不等式ln x≤x-1, 则a1+a2+a3+a4=ln(a1+a2+a3)≤a1+a2+a3-1, 所以a4=a1·q3≤-1.由a1>1,得q<0. 若q≤-1,则ln(a1+a2+a3)=a1+a2+a3+a4=a1(1+q)·(1+q2)≤0. 又a1+a2+a3=a1(1+q+q2)≥a1>1, 所以ln(a1+a2+a3)>0,矛盾. 因此-1<q<0. 所以a1-a3=a1(1-q2)>0,a2-a4=a1q(1-q2)<0, 所以a1>a3,a2<a4. 故选B.] [方法归纳] 等差、等比数列性质问题的求解策略 1.解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解. 2.运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题. 3.在应用相应性质解题时,要注意性质成立的前提条件,有时需进行适当变形.此外,解题时注意设而不求思想的运用. ■对点即时训练· 1.已知等差数列{an},且3(a1+a5)+2(a6+a9+a12)=48,则数列{an}的前11项之和为( ) A.84 B.68 C.52 D.44 D [由等差数列的性质可得: 3(a1+a5)+2(a6+a9+a12)=3×2a3+2×3a9=6(a3+a9)=48,则a3+a9=8,结合等差数列前n项和公式有:S11=×11=×11=×11=44.] 2.已知数列{an}是等比数列,Sn为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12=( ) A.40 B.60 C.32 D.50 B [由等比数列的性质可知,数列S3,S6-S3,S9-S6,S12-S9是等比数列, 即数列4,8,S9-S6,S12-S9是等比数列, 因此S12=4+8+16+32=60,选B.] 3.(2018·沈阳质量检测)已知数列{an}是等比数列,数列{bn}是等差数列,若a1·a6·a11=3,b1+b6+b11=7π,则tan=________. - [∵{an}是等比数列,{bn}是等差数列, 且a1·a6·a11=3, ∴a=()3,b1+b6+b11=7π,3b6=7π, ∴a6=,b6=, ∴tan=tan =tan=tan=-.] 题型3 等差(比)数列的判断与证明 ■核心知识储备· 数列{an}是等差数列或等比数列的证明方法 (1)证明数列{an}是等差数列的两种基本方法 ①利用定义,证明an+1-an(n∈N*)为同一常数; ②利用中项性质,即证明2an=an-1+an+1(n≥2). (2)证明数列{an}是等比数列的两种基本方法 ①利用定义,证明(n∈N*)为同一常数; ②利用等比中项,即证明a=an-1an+1(n≥2). ■高考考法示例· 【例3】 设数列{an}的前n项和为Sn,且满足an-Sn-1=0(n∈N*). (1)求数列{an}的通项公式; (2)是否存在实数λ,使得数列{Sn+(n+2n)λ}为等差数列?若存在,求出λ的值,若不存在,请说明理由. [解] (1)由an-Sn-1=0(n∈N*), 可知当n=1时,a1-a1-1=0⇒a1=2. 又由an-Sn-1=0(n∈N*), 可得an+1-Sn+1-1=0, 两式相减,得-=0, 即an+1-an=0, 即an+1=2an. 所以数列{an}是以2为首项,2为公比的等比数列, 故an=2n(n∈N*). (2)由(1)知,Sn==2(2n-1), 所以Sn+(n+2n)λ=2(2n-1)+(n+2n)λ, 若{Sn+(n+2n)λ}为等差数列, 则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2. 经检验λ=-2时,{Sn+(n+2n)λ}成等差数列,故λ的值为-2. 【教师备选】 (2017·全国卷Ⅰ)记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列. [解] (1)设{an}的公比为q(q≠0).由题设可得 解得 故{an}的通项公式为an=(-2)n. (2)由(1)可得 Sn==-+(-1)n. 由于Sn+2+Sn+1=-+(-1)n =2=2Sn, 故Sn+1,Sn,Sn+2成等差数列. [方法归纳] 等差(比)数列的判断与证明的注意事项 1.判断一个数列是等差(比)数列,也可以利用通项公式及前n项和公式,但不能作为证明方法.在解答题中常用定义法和等差(比)中项法,通项公式法和前n项和公式法主要适用选择题与填空题. 2.=q和a=an-1an+1(n≥2)都是数列{an}为等比数列的必要不充分条件,判断时还要看各项是否为零. ■对点即时训练· (2016·全国卷Ⅲ)已知数列{an}的前n项和Sn=1+λan,其中λ≠0. (1)证明{an}是等比数列,并求其通项公式; (2)若S5=,求λ. [解] (1)证明:由题意得a1=S1=1+λa1, 故λ≠1,a1=,故a1≠0. 由Sn=1+λan,Sn+1=1+λan+1得an+1=λan+1-λan, 即an+1(λ-1)=λan. 由a1≠0,λ≠0得an≠0,所以=. 因此{an}是首项为,公比为的等比数列, 于是an=. (2)由(1)得Sn=1-. 由S5=得1-=, 即=. 解得λ=-1. [高考真题] 1.(2018·全国卷Ⅰ)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 B [法一:设等差数列{an}的公差为d,∵3S3=S2+S4,∴3=2a1+d+4a1+d,解得d=-a1,∵a1=2, ∴d=-3, ∴a5=a1+4d=2+4×(-3)=-10.故选B. 法二:设等差数列{an}的公差为d,∵3S3=S2+S4,∴3S3=S3-a3+S3+a4,∴S3=a4-a3,∴3a1+d=d. ∵a1=2,∴d=-3,∴a5=a1+4d=2+4×(-3)=-10.故选B.] 2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏 B [设塔的顶层的灯数为a1,七层塔的总灯数为S7,公比为q,则由题意知S7=381,q=2, ∴S7===381,解得a1=3. 故选B.] 3.(2016·全国卷Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________. 64 [设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1=10, ∴a1=8. 故a1a2…an=aq1+2+…+(n-1)=23n· =2=2. 记t=-+=-(n2-7n), 结合n∈N*可知n=3或4时,t有最大值6. 又y=2t为增函数,从而a1a2…an的最大值为26=64.] 4.(2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和.若Sm=63,求m. [解] (1)设{an}的公比为q,由题设得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1. (2)若an=(-2)n-1,则Sn=. 由Sm=63得(-2)m=-188,此方程没有正整数解. 若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6. [最新模拟] 5.(2018·昆明模拟)已知数列{an},则有( ) A.若a=4n,n∈N*,则{an}为等比数列 B.若an·an+2=a,n∈N*,则{an}为等比数列 C.若am·an=2m+n,m,n∈N*,则{an}为等比数列 D.若an·an+3=an+1·an+2,n∈N*,则{an}为等比数列 C [若a1=-2,a2=4,a3=8,满足a=4n,n∈N*,但{an}不是等比数列,故A项错;若an=0,满足an·an+2=a,n∈N*,但{an}不是等比数列,故B项错;若an=0,满足an·an+3=an+1·an+2,n∈N*,但{an}不是等比数列,故D项错;am·an=2m+n,m,n∈N*,则有===2,则{an}是等比数列.] 6.(2018·乌鲁木齐质量检测)设等差数列{an}的前n项和为Sn,若=2,则=( ) A.2 B. C.4 D. B [设等差数列{an}的公差为d,=2, 即a3+3d=2a3,a3=3d, ====.故选B.] 7.(2018·湖北教研协作体联考)在等差数列{an}中,已知公差d<0,a1=10 ,且a1,2a2+2,5a3成等比数列. (1)求数列{an}的通项公式an; (2)求|a1|+|a2|+…+|a20|. [解] (1)由题意可得,a2=10+d,a3=10+2d,(2a2+2)2=5a1a3,即4(11+d)2=50(10+2d),化简得d2-3d-4=0,解得d=-1或d=4(舍去). ∴an=10-(n-1)=11-n. (2)由(1)得an=11-n,由an=11-n≥0,得1≤n≤11, 由an=11-n<0,得n>11, ∴|a1|+|a2|+…+|a20|=(a1+a2+…+a11)-(a12+…+a20)=-S20+2S11=-+2=100. ∴|a1|+|a2|+…+|a20|=100. 14 / 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理科 数学 培养 讲义 部分 专题 等差数列
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文