人教版七年级下册数学全册导学案.docx
《人教版七年级下册数学全册导学案.docx》由会员分享,可在线阅读,更多相关《人教版七年级下册数学全册导学案.docx(95页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学全册导学案 人教版七年级下册数学全册导学案 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级下册数学全册导学案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为人教版七年级下册数学全册导学案的全部内容。 89 第1课时:5.1.1 相交线 导学案 【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角 2、理解对顶角相等,并能运用它解决一些问题. 【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质。 【学习过程】 一、温故知新(5分钟) 各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报. 二、自主探索(15分钟) 探索一:完成课本P2页的探究,填在课本上. 你能归纳出“邻补角”的定义吗? . “对顶角”的定义呢? . 自学检测一: 1.如图1所示,直线AB和CD相交于点O,OE是一条射线. (1)写出∠AOC的邻补角:____ _ ___ __; (2)写出∠COE的邻补角: __; (3)写出∠BOC的邻补角:____ _ ___ __; (4)写出∠BOD的对顶角:____ _. 2.如图所示,∠1与∠2是对顶角的是( ) 探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由. 请归纳“对顶角的性质": . 自学检测二: 1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______ 2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______ 3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____. 三、当堂反馈(25分钟) 预备题: 如图,已知直线a、b相交.∠1=40°,求∠2、∠3、∠4的度数 解:∠3=∠1=40°( )。 ∠2=180°-∠1=180°-40°=140°( )。 ∠4=∠2=140°( )。 1、如图,已知∠1=30° ,求∠2、∠3∠4的度数。 2.若两个角互为邻补角,则它们的角平分线所夹的角为 度. 3.如图所示,直线a,b,c两两相交,∠1=60°,∠2=∠4,求∠3、∠5的度数. 4.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么? 5.探索规律:(画图探究) (1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角; (3)四条直线交于一点,有 对对顶角; (4)n条直线交于一点,有 对对顶角. 第2课时 5.1。2 垂线 导学案 【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质; 2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离. 【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用。 【学习难点】垂线的画法以及对点到直线的距离的概念的理解。 【学习过程】 一、温故知新(5分钟) 在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB与CD相交于点O”. 我们如果把直线CD绕点O旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD的大小都将发生变化. 当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 用几何语言表示: 方式⑴∵ ∠AOC=90° ∴ AB_____CD,垂足是_____ 方式⑵∵ AB⊥CD于O ∴ ∠AOC=______ 二、自主探索(25分钟) 探索一:请你认真画一画,看看有什么收获. ⑴如图1,利用三角尺或量角器画已知直线的垂线,这样的垂线能画__________条; ⑵如图2,经过直线上一点A画的垂线,这样的垂线能画_____条; ⑶如图3,经过直线外一点B画的垂线,这样的垂线能画_____条; (图1) (图2) (图3a) (图3b) 经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 自学检测一: 1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°, 求∠BOC度数 2.如图所示,直线AB⊥CD于点O,直线EF经过点O, 若∠1=26°,求∠2的度数. 3.如图所示,直线AB,CD相交于点O,P是CD上一点. (1)过点P画AB的垂线PE,垂足为E. (2)过点P画CD的垂线,与AB相交于F点. (3)比较线段PE,PF,PO三者的大小关系 探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 自学检测二: 1.在下列语句中,正确的是( ). A.在同一平面内,一条直线只有一条垂线 B.在同一平面内,过直线上一点的直线只有一条 C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条 D.在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB的距离是_______,AC〉CD的依据是_________. 三、当堂反馈(15分钟) 1.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是( ) A.∠EOD比∠FOB大 B.∠EOD比∠FOB小 C.∠EOD与∠FOB相等 D.∠EOD与∠FOB大小关系不确定 2.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由. 3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB. (1)求∠AOC的度数;(2)判断AB与OC的位置关系. 第3课时5。1.3 同位角、内错角、同旁内角 导学案 【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们; 2通过三线八角的特点的分析,培养学生抽象概括问题的能力。 【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角. 【学习难点】能准确在各种变式的图形中找出这三类角。 【学习过程】 一、温故知新(5分钟) 在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有 对对顶角,有 对邻补角。如果是一条直线分别与两条直线相交,结果又会怎样呢? 二、探索思考(25分钟) 探索:如图,直线c分别与直线a、b相交(也可以说两条 直线a、b被第三条直线c所截),得到8个角,通常称为 “三线八角",那么这8个角之间有哪些关系呢? 观察填表: 表一 位置1 位置2 结论 ∠1和∠5 处于直线c的同侧 处于直线a、b的同一方 这样位置的一对角就称为同位角 ∠2和∠8 处于直线c的( )侧 这样位置的一对角就称为( ) ∠3和∠6 处于直线a、b的( )方 这样位置的一对角就称为( ) ∠1和∠5 这样位置的一对角就称为( ) 表二 位置1 位置2 结论 ∠4和∠8 处于直线c的两侧 处于直线a、b之间 这样位置的一对角就称为内错角 ∠3和∠5 这样位置的一对角就称为( ) 表三 位置1 位置2 结论 ∠3和∠8 处于直线c的( )侧 处于直线a、b( ) 这样位置的一对角就称为同旁内角 ∠4和∠5 这样位置的一对角就称为( ) 自学检测: 1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角. (图1) (图2) (图3) 2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______被直线________所截而形成的. 3.如图3所示,∠B同旁内角有哪些? 三、当堂反馈(15分钟) 1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________ (2)∠3和∠4是直线_________和_________被_________所截,构成内错角. 2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为( ) A。 60° B. 120° C. 60°或120° D.无法确定 3.如图,判断正误 ①∠1和∠4是同位角;( ) ②∠1和∠5是同位角;( ) ③∠2和∠7是内错角;( ) ④∠1和∠4是同旁内角;( ) 4.如图,直线DE、BC被直线AB所截。 ⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角? ⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么? 第4课时5。2。1 平行线 导学案 【学习目标】1使学生知道平行线的概念,掌握平行公理; 2了解平行线具有传递性,能够画出已知直线的平行线. 【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线。 【学习难点】用几何语言描述画图过程,根据几何语言画出图形。 【学习过程】 一、温故知新(5分钟) 在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示。 二、探索思考(25分钟) 探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线。如图,记作“∥”或“AB∥CD”,读作“直线平行于直线"。请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示。。 自学检测一: 1.下列说法中,正确的是( ). A.两直线不相交则平行 B.两直线不平行则相交 C.若两线段平行,那么它们不相交 D.两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ). A.0个 B.1个 C.2个 D.3个 探索二:请同学们仔细阅读课本P13页“平行线的讨论",认真思考。通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行。 同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行。简单的说就是:平行于同一直线的两直线平行. 用几何语言可表示为:如果∥,∥,那么 . 自学检测二: 1.如图1所示,与AB平行的棱有_______条,与AA′平行的棱有_____条. (图1) (图2) 2.如图2所示,按要求画平行线. (1)过P点画AB的平行线EF;(2)过P点画CD的平行线MN. 3.如图3所示,点A,B分别在直线,上,(1)过点A画到的垂线段;(2)过点B画直线∥. (图3) 4.下列说法中,错误的有( ). ①若a与c相交,b与c相交,则a与b相交; ②若a∥b,b∥c,那么a∥c; ③过一点有且只有一条直线与已知直线平行; ④在同一平面内,两条直线的位置关系有平行、相交、垂线三种 A.3个 B.2个 C.1个 D.0个 三、当堂反馈(15分钟) 1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________. 2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________。 3.判断题 (1)不相交的两条直线叫做平行线.( ) (2)在同一平面内,不相交的两条射线是平行线.( ) (3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( ) 4.读下列语句,并画出图形: ⑴点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直. ⑵直线AB,CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P且与直线AB平行,与直线CD相交于E. 第5课时5。2.2 平行线的判定 导学案 【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力。 【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行. 【学习难点】运用平行线的判定方法进行简单的推理. 【学习过程】 一、温故知新(5分钟) 还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角. 二、探索思考(25分钟) 探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗? 由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以) 判定方法1(判定公理) 几何语言表述为:∵ ∠___=∠___ ∴ AB∥CD 由判定方法1,结合对顶角的性质,我们可以得到: 判定方法2(判定定理) 几何语言表述为:∵ ∠___=∠___ ∴ AB∥CD 由判定方法1,结合邻补角的性质,我们可以得到: 判定方法3(判定定理) 几何语言表述为:∵ ∠___+∠___=180° ∴ AB∥CD 自学检测一: B A D (1题) (2题) (3题) 1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____. 2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知) ∴ ∥ ( ) (2)∵∠ABC +∠ =180°(已知) ∴AB∥CD( ) (3)∵∠ =∠ (已知) ∴AD∥BC( ) (4)∵∠5=∠ (已知) ∴AB∥CD( ) 探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,∥,你能说明是什么道理吗? 结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。简记为:在同一平面内,垂直于同一直线的两直线平行。 如图,几何语言表述为:∵⊥,⊥ ∴ 自学检测二: 1.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2, 试说明BF∥CE. 三、当堂反馈(15分钟) 1.如图所示,在下列条件中,不能判断L1∥L2的是( ). A.∠1=∠3 B.∠2=∠3 C.∠4+∠5=180° D.∠2+∠4=180° 2.如图所示,已知∠1=120°,∠2=60°.试说明与的关系? 3.如图所示,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明AB∥CD. 第6课时5。3.1 平行线的性质 导学案 【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证; 2使学生经过对比后,理解平行线的性质和判定的区别和联系。 【学习重点】平行线的三个性质及其应用。 【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明。 【学习过程】 一、学前准备 通过前面的学习,你知道判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2: ⑹平行线的判定推论: 二、探索思考 探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以) 性质1(性质公理) 几何语言表述为:∵ AB∥CD ∴ ∠___=∠___ 由性质1,结合对顶角的性质,我们可以得到: 性质2(性质定理) 几何语言表述为:∵ AB∥CD ∴ ∠___=∠___ A 由性质1,结合邻补角的性质,我们可以得到: 性质3(性质定理) 几何语言表述为:∵ AB∥CD ∴ ∠___+∠___= 练习一: 1. 根据右图将下列几何语言补充完整 (1)∵AD∥ (已知) ∴∠A+∠ABC=180°( ) (2)∵AB∥ (已知) ∴∠4=∠ ( ) ∠ABC=∠ ( ) 2. 如右图所示,BE平分∠ABC,DE∥ BC,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 3、如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数. 探索二:用三角尺和直尺画平行线 做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段、、…、都与两条平行的横线和垂直吗? 它们的长度相等吗? 像这样,同时垂直于两条平行直线,并且夹在 这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等. 练习二: 1.如图所示,已知直线AB∥CD,且被直线EF所截,若∠1=50°,则∠2=____,∠3=______. (1题) (2题) (3题) 2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°,则∠A=______. 3.如图所示,已知AB∥CD,BC∥DE,∠1=120°,则∠2=______. 三、当堂反馈 1.如图所示,如果AB∥CD,那么( ). A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5 C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8 (1题) (2题) (3题) 2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有( ). A.3个 B.2个 C.5个 D.4个 3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数. 4.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数。 5。如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数 第7课时 平行线的判定及性质习题课 导学案 【学习目标】加深对平行线的判定及性质的理解及其应用. 【学习重点】平行线的判定及性质的应用. 【学习难点】灵活运用平行线的判定及性质去推理证明. 【学习过程】 一、学前准备 通过前面的学习,你知道判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2: ⑹平行线的判定推论: 通过前面的学习,你还知道两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理1: ⑷平行线的性质定理2: ⑸平行线间的距离 . 二、探索思考 练习:让我先试试,相信我能行。 1.如图1,若∠1=∠2,那么_____∥______,根据___ __. 若a∥b,那么∠3=_____,根据___ __. (图1) (图2) (图3) (图4) 2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____. ∴∠B=______,根据___ _____. 3.如图3,若AB∥CD,那么________=_______;若∠1=∠2,那么_____∥_____; 若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____ 4.如图4,一条公路两次拐弯后,和原来的方向相同,如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是 度,根据___ . 5.如图,修高速公路需要开山洞,为节省时间,要在山两面A,B 同时开工,在A处测得洞的走向是北偏东76°12′,那么在B处 应按什么方向开口,才能使山洞准确接通,请说明其中的道理. 6.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过 镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光 线和最后离开潜望镜的光线是平行的. 三、当堂反馈 1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______. 2.已知如图2,边OA,OB均为平面反光镜,∠AOB=40°,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是( ). A.60° B.80° C.100° D.120° (图1) (图2) (图3) 3.如图3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理. 4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.⑴求∠DAB的度数;⑵求∠EAC的度数;⑶求∠BAC的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗? 5.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A。垂直 B。平行 C.重合 D.相交 6.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( ) A。35° B.30° C.25° D。20° 7。如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于( ) A.180° B.360° C。540° D。720° (3) (4) (5) (6) 8.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有( ) A。6个 B。5个 C.4个 D.3个 9。如图6所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______;如果 ∠CED=∠FDE,那么________∥_________.根据是________。 第8课时5。3。2命题、定理 导学案 【学习目标】了解命题、定理的概念,能够区分命题的题设和结论. 【学习重点】能够区分命题的题设和结论。 【学习难点】能够区分命题的题设和结论. 【学习过程】 一、探索思考 探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如: ⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题. 每个命题都是由_______和______组成。每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是 ,用“那么”开始的部份是 . 像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______。 例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______。 我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理. 二、学以致用 1.下列语句是命题的个数为( ) ①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗? ④若│a│=3,则a=3. A.1个 B.2个 C.3个 D.4个 2.下列5个命题,其中真命题的个数为( ) ①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; ④内错角互补,两直线平行; ⑤如果a〈b,b〈c,那么a〈c。 A.1个 B.2个 C.3个 D.4个 3.“同一平面内,垂直于同一条直线的两条直线互相平行”是 命题,其中,题设 是 ,结论是 , 4.将下列命题改写成“如果……那么……”的形式. (1)直角都相等. (2)末位数是5的整数能被5整除. (3)三角形的内角和是180°. (4)平行于同一条直线的两条直线互相平行. 三、当堂反馈 1.下列语句中不是命题的有( ) ⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放. A.1个 B.2个 C.3个 D.4个 2.下列命题中,正确的是( ) A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角; C.两条直线被第三条直线所截,同位角相等; D.和为180°的两个角叫做邻补角. 3.下列命题中的条件(题设)是什么?结论是什么? (1)如果两个角相等,那么它们是对顶角; (2)如果两条直线都与第三条直线平行,那么这两条直线也平行; 4.将下列命题改写成“如果……那么……"的形式,并判断正误. (1)对顶角相等; (2)同位角相等; (3)同角的补角相等. 第9课时5。4平移 导学案 【学习目标】1了解平移的概念,知道生活中常见的平移例子; 2掌握平移的规律,会利用平移画图. 【学习重点】平移的规律,画图. 【学习难点】利用平移的特- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 全册导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文