北师版八年级下册数学第一章三角形的证明精选试题.doc
《北师版八年级下册数学第一章三角形的证明精选试题.doc》由会员分享,可在线阅读,更多相关《北师版八年级下册数学第一章三角形的证明精选试题.doc(8页珍藏版)》请在咨信网上搜索。
______________________________________________________________________________________________________________ 第一章 三角形的证明 1.在△ABC中,AC垂直于BC,点P是∠A,∠B和∠C的角平分线,从点P分别向AC,BC和AB作垂线,分别交AC,BC和AB于点D,E,F。已知AC=8,BC=6,AB=10。求PD=____ 2.如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论: (1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。其中结论正确的是( ) A、(1),(3) B、(2),(3) C、(3),(4) D、(1),(2),(4) (第1题图) (第2题图) 3、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( ) A、40° B、45° C、50° D、60° 4、如图,在等边中,分别是上的点,且,AD与BE相交于点P,则的度数是( ). A. B. C. D. (第3题图) (第4题图) 5、如图,表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ). A.1处 B.2处 C.3处 D.4处 D C B A E H 6、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论: A B C E D O P Q ① AD=BE; ② PQ∥AE; ③ AP=BQ; ④ DE=DP; ⑤ ∠AOB=60°. 恒成立的结论有______________(把你认为正确的序号都填上). 7、如图,已知中,,,是高和的交点,则线段的长度为( ) 第7题图8 A. B.4 C. D.5 8、如图,将长方形ABCD沿对角线BD翻折,点C落在点E的 位置,BE交AD于点F. 求证:重叠部分(即)是等腰三角形. 证明:∵四边形ABCD是长方形,∴AD∥BC 又∵与关于BD对称, ∴ . ∴是等腰三角形. 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?( ). ①;②;③;④ A.①③ B.②③ C.②① D.③④ 9、如图,已知线段a,h作等腰△ABC,使AB=AC,且 BC=a,BC边上的高AD=h. 张红的作法是:(1)作线段 BC=a;(2)作线段BC的垂直平分线MN,MN与BC相 交于点D;(3)在直线MN上截取线段h;(4)连结AB, AC,则△ABC为所求的等腰三角形. 上述作法的四个步骤中,有错误的一步你认为是( ). A. (1) B. (2) C. (3) D. (4) 10、如图,在等腰直角三角形ABC中,AC=BC,以斜边AB为一边作等边三角形ABD,使得C、D在AB的同侧,再以CD为一边作等边三角形CDE,使得C、E在AD的异侧,若AE=1,则CD的长为( ) (第9题图) A、 B、 C、 D、 (第10题图) (第11题图) (第12题图) 11、如图、在等边三角形ABC中,AC=9,点O在AC上且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转得到线段OD,要使得点D恰好落在BC上,则AP的长为( ) A、4 B、5 C、6 D、7 12、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD∶DC=2∶1,BC=7.8cm,则D到AB的距离为 cm. 13、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=∠DAB ;④△ABC是正三角形。请写出正确结论的序号 (把你认为正确结论的序号都填上) 。 14、在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是______ __.(填序号) 15、如图14,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A重合,折痕为DE,则CD的长为________. 16、如图15,在中,AB=AC,,D是BC上任意一点,分别做DE⊥AB于E,DF⊥AC于F,如果BC=20cm,那么DE+DF= _______cm. 17、如图16,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于点,若,则_______ . 18、如图,是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是_______. P (第17题图) (第18题图) (第19题图) 19、如图,将边长为1的正三角形沿轴正方向连续翻转2008次,点依次落在点的位置,则点的横坐标为 . 20、已知:如图,,D是等腰ABC底边BC上一动点,它到两腰AB、AC的距离分别为DE、DF。则DE+DF的值为 。 21.等边三角形ABC中,D是三角形内一点,DA = DB,BE = AB,∠CBD = ∠EBD,求∠E的度数; 22、两个全等的含300, 600角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC.试判断△EMC的形状,并说明理由. 23、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. D A B C G E F (1)求证:△AGE≌△DAB (2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数. 图23 24、如图23,在中,,AB=AC,的 平分线BD交AC于D,CE⊥BD的延长线于点E. 求证:. 图24 25、如图24,,OM平分,将直角三角板的顶 点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问 PC与PD相等吗?试说明理由. 26、如图,在中,,边AB的垂直平分线交BC于点D,于F点,并交BC边上的 高AE于点G。求证:EG=EC。 27、如图,在中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若. (1)求的度数;证明之; (4)若将(1)中的改为钝角,你对这个规律性的认识是否需要加以修改? (2)如果将(1)中的度数改为,其余条件不变,再求的度数; (3)你发现有什么样的规律性,试 28、已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF//AC交CE的延长线于点F.求证:(1)AC=2BF.(2)AB垂直平分DF。 29、如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G, 求证:BG=CF。 29、已知如图△ABC是边长为a的等边三角形,△BCD的顶角∠BDC=120°,DB=DC以D为顶点作一个60°的角,角的两边DM、DN分别交AB于M,交AC于N,连结MN,求△AMN的周长。 31、如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论. (2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由. 32、(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD, 连结AC和BD,相交于点E,连结BC.求∠AEB的大小; C B O D A E (2)如图8,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小. B A O D C E 33、如图,△ABC为等边三角形,在BC上取点M,使得,在AB上取点N,使得,点依次是AC边上的四等分点,求的度数。 34、如图,在△ABC中,,BQ与AP为△ABC的角平分线。 求证: 35、如图,已知,点B在射线AM上,AB=4,P为射线AN上一动点,以BP为边作等边三角形BPQ,O是△BPQ的外心。 (1)求证:AO平分; (2)当点P在AN上运动时(不与点A重合),AO与BP交于点C,,求关于的函数解析式,并写出的取值范围。 36、如图,在△ABC中,D是边AB上一点,。 (1)若,求CB的长; (2)过点D作的平分线DF交CB于点F,若线段AC沿AB方向平移,当点A移动到点D时,判断线段AC的中点E能否移到线段DF上,并说明理由。 Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师版八 年级 下册 数学 第一章 三角形 证明 精选 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文