2021-2022学年高中数学-第2章-等式与不等式-2.2-微专题2-不等式恒成立、能成立问题学案.doc
《2021-2022学年高中数学-第2章-等式与不等式-2.2-微专题2-不等式恒成立、能成立问题学案.doc》由会员分享,可在线阅读,更多相关《2021-2022学年高中数学-第2章-等式与不等式-2.2-微专题2-不等式恒成立、能成立问题学案.doc(5页珍藏版)》请在咨信网上搜索。
2021-2022学年高中数学 第2章 等式与不等式 2.2 微专题2 不等式恒成立、能成立问题学案 新人教B版必修第一册 2021-2022学年高中数学 第2章 等式与不等式 2.2 微专题2 不等式恒成立、能成立问题学案 新人教B版必修第一册 年级: 姓名: 微专题2 不等式恒成立、能成立问题 类型1 数形结合法解决恒成立问题 【例1】 当1≤x≤2时,不等式x2+mx+4<0恒成立,求m的取值范围. [解] 令y=x2+mx+4. ∵y<0在[1,2]上恒成立, ∴x2+mx+4=0的根一个小于1,另一个大于2. 如图,得 即解得m<-5. ∴m的取值范围是(-∞,-5). 结合函数的图像将问题转化为函数图像的对称轴,区间端点的函数值或函数图像的位置(相对于x轴)关系求解.可结合相应一元二次方程根的分布解决问题. 1.(1)已知不等式kx2+2kx-(k+2)<0恒成立,求实数k的取值范围; (2)若不等式-x2+2x+3≤a2-3a对任意实数x恒成立,求实数a的取值范围. [解] (1)当k=0时,原不等式化为-2<0,显然符合题意. 当k≠0时,令y=kx2+2kx-(k+2), ∵y<0恒成立, ∴其图像都在x轴的下方,即开口向下,且与x轴无交点. ∴解得-1<k<0. 综上,实数k的取值范围是(-1,0]. (2)原不等式可化为x2-2x+a2-3a-3≥0, ∵该不等式对任意实数x恒成立, ∴Δ≤0,即4-4(a2-3a-3)≤0,即a2-3a-4≥0,解得a≤-1或a≥4, ∴实数a的取值范围是(-∞,-1]∪[4,+∞). 类型2 分离参数法解决恒成立问题 【例2】 设函数y=mx2-mx-1,x∈[1,3],若y<-m+5恒成立,求m的取值范围. [解] y<-m+5恒成立, 即m(x2-x+1)-6<0恒成立, ∵x2-x+1=+>0, 又m(x2-x+1)-6<0, ∴m<. ∵y==在1≤x≤3上的最小值为,∴只需m<即可. ∴m的取值范围为. 通过分离参数将不等式恒成立问题转化为求函数最值问题. 2.已知函数y=对于任意x≥1且y>0恒成立,求实数a的取值范围. [解] x≥1时,y=>0恒成立,等价于x2+2x+a>0恒成立, 即a>-(x2+2x)恒成立, 即a>[-(x2+2x)]max. 令y1=-(x2+2x),则当x≥1时, y1=-(x2+2x)=-(x2+2x+1)+1 =-(x+1)2+1≤-3. ∴实数a的取值范围为{a|a>-3}. 类型3 转换主元解决恒成立问题 【例3】 已知a∈[-1,1]时不等式x2+(a-4)x+4-2a>0恒成立,求x的取值范围. [解] 把不等式的左端看成关于a的一次函数,记y=(x-2)a+x2-4x+4,则由y>0对于任意的a∈[-1,1]恒成立, 将a=-1和a=1代入,解不等式组 得x<1或x>3. ∴x的取值范围是(-∞,1)∪(3,+∞). 转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解. 3.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围. [解] 不等式x2+px>4x+p-3恒成立,即(x-1)p+(x2-4x+3)>0, 设y=(x-1)p+(x2-4x+3)是以p为自变量的一次函数,则0≤p≤4时y>0恒成立, 即 解得x>3或x<-1. ∴x的取值范围是{x|x>3或x<-1}. 类型4 转化为函数的最值解决能成立问题 【例4】 若存在x∈R,使得≥2成立,求实数m的取值范围. [解] ∵x2-2x+3=(x-1)2+2>0, ∴4x+m≥2(x2-2x+3)能成立, ∴m≥2x2-8x+6能成立, 令y=2x2-8x+6=2(x-2)2-2≥-2, ∴m≥-2, ∴m的取值范围为[-2,+∞). 能成立问题可以转化为m>ymin或m<ymax的形式,求出y的最大值与最小值,从而求得参数的取值范围. 4.已知函数y=|2x+1|-|x|. (1)求不等式y>0的解集; (2)若存在x∈R,使得y≤m成立,求实数m的取值范围. [解] (1)由y>0,得|2x+1|>|x|,两边同时平方,得3x2+4x+1>0, 解得x<-1或x>-. 故原不等式的解集为 . (2)存在x∈R,使得y≤m成立,故m≥ymin. 当x<-,y=-x-1; 当-≤x<0,y=3x+1; 当x≥0,y=x+1. 当x=-时,y取得最小值为-. ∴m≥-, 即m的取值范围为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 高中数学 等式 不等式 2.2 专题 成立 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2021-2022学年高中数学-第2章-等式与不等式-2.2-微专题2-不等式恒成立、能成立问题学案.doc
链接地址:https://www.zixin.com.cn/doc/2235664.html
链接地址:https://www.zixin.com.cn/doc/2235664.html