2019-2020年中考数学试卷分类汇编:图形的相似与位似.doc
《2019-2020年中考数学试卷分类汇编:图形的相似与位似.doc》由会员分享,可在线阅读,更多相关《2019-2020年中考数学试卷分类汇编:图形的相似与位似.doc(69页珍藏版)》请在咨信网上搜索。
2019-2020年中考数学试卷分类汇编:图形的相似与位似 一.选择题 1.(2013湖北孝感,9,3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是( ) A. (﹣2,1) B. (﹣8,4) C. (﹣8,4)或(8,﹣4) D. (﹣2,1)或(2,﹣1) 考点: 位似变换;坐标与图形性质. 专题: 作图题. 分析: 根据题意画出相应的图形,找出点E的对应点E′的坐标即可. 解答: 解:根据题意得: 则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1). 故选D. 点评: 此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方. 2.(2013湖北孝感,12,3分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于( ) A. B. C. D. 考点: 相似三角形的判定与性质;等腰三角形的判定与性质. 分析: 依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度. 解答: 解:∵AB=AC, ∴∠ABC=∠ACB, 又∵∠CBD=∠A, ∴△ABC∽△BDC, 同理可得:△ABC∽△BDC∽△CDE∽△DFE, ∴=,=,=, 解得:CD=,DE=,EF=. 故选C. 点评: 本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错. 3.(2013湖北宜昌,15,3分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( ) A. (6,0) B. (6,3) C. (6,5) D. (4,2) 考点: 相似三角形的性质;坐标与图形性质. 分析: 根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断. 解答: 解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2. A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意; B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意; C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意; D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意; 故选B. 点评: 本题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键. 图(四) 4. .[2013湖南邵阳,14,3分] 如图(四)所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=___________. 知识考点:三角形中位线定理. 审题要津:三角形的中位线平行于第三边并且等于第三边的一半. 满分解答:解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线.又DE=5,则BC=2DE=10.故答案为10. 名师点评:本题考查了三角形中位线的性质,解题时注意数形结合思想的运用. 5.(2013·聊城,11,3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为( ) A.a B. C. D. 考点:相似三角形的判定与性质. 分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积. 解答:解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∴△ACD的面积:△ABC的面积为1:4, ∴△ACD的面积:△ABD的面积=1:3, ∵△ABD的面积为a,∴△ACD的面积为a,故选C. 点评:本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型. 6.(2013•东营,10,3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值( ) A.只有1个B.可以有2个C.可以有3个D.有无数个 答案:B 解析:当直角边为6,8时,且另一个与它相似的直角三角形3,4也为直角边时,x的值为5,当8,4为对应边且为直角三角形的斜边时,x的值为,故x的值可以为5或.两种情况。 7.(2013·济宁,11,3分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm. 考点:相似三角形的应用. 分析:根据题意可画出图形,再根据相似三角形的性质对应边成比例解答. 解答:解:∵DE∥BC,∴△AED∽△ABC∴= 设屏幕上的小树高是x,则= 解得x=18cm.故答案为:18. 点评:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题. 8. (2013•新疆(5分)如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是( ) A. B. C. D. 【答案】C. 【解析】∵DE∥BC, ∴△ADE∽△ABC, 则=, ∵DE=1,AD=2,DB=3, ∴AB=AD+DB=5, ∴BC==. 【方法指导】本题考查了相似三角形的判定和性质,难度一般,解答本题的关键是根据平行证明△ADE∽△ABC 9.(2013四川绵阳,10,3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( B ) 10题图 A. B. C. D. [解析]OA=4,OB=3,AB=5,△BDH∽△BOA, BD/AB=BH/OB=DH/OA,6/5=BH/3,BH=18/5, AH=AB-BH=5-18/5=7/5,△AGH∽△ABO, GH/BO=AH/AO,GH/3=7/5 / 4,GH=21/20。 10.(2013四川内江,8,3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( ) A. 2:5 B. 2:3 C. 3:5 D. 3:2 考点: 相似三角形的判定与性质;平行四边形的性质. 分析: 先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论. 解答: 解:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠EAB=∠DEF,∠AFB=∠DFE, ∴△DEF∽△BAF, ∵S△DEF:S△ABF=4:25, ∴DE:AB=2:5, ∵AB=CD, ∴DE:EC=2:3. 故选B. 点评: 本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键. 11.(2013黑龙江省哈尔滨市,9) 如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( ). (A) (B) (C) (D) 考点:相似三角形的性质。,三角形的中位线 分析:利用相似三角形的判定和性质是解题的关键 解答:由MN是三角形的中位线,2MN=BC, MN∥BC ∴△ABC∽△AMN∴三角形的相似比是2:1,∴△ABC与△AMN的面积之比为4:1.,则△AMN的面积与四边形MBCN的面积比为, 故选B 【解析】∵BC为圆的直径,∴∠BDC=90°,即BD⊥AC。 ∵BD平分∠ABC,∴AD=DC. ∴△ABC是等腰三角形。 由题意得∠ADE=∠ABC, ∠A为公共角,∴△ADE∽△ABC, ∴,∴AC2=2AB·AE。∴△ADE是等腰三角形。 故只有D不一定正确。 【方法指导】本题是以圆为背景 的几何证明题,涉及到的知道点等腰三角形的判定与性质,相似三角形的判定与性质。 13.(2013浙江台州,8,4分)如图,在△ABC中,点D,E分别在边AB,AC上,且,则:的值为( ) A.1: B.1:2 C.1:3 D.1:4 A B C D E 第8题 【答案】:C. 【解析】分别取AB、AC的中点M、N,连结MN,又∵,易知AM=AE,AN=AD,易证△ADE≌△ANM(SAS),由于MN为△ABC的中位线,利用相似三角形的性质,易知,∴:=1:3. 【方法指导】本题考查中位线定理、证明三角形全等、相似三角形的面积比等于相似比的平方等知识点,解决本题时,通过作中位线构造全等三角形。 14.(2013重庆,4,4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3︰4,则△ABC与△DEF的面积之比为( ) A.4︰3 B.3︰4 C.16︰9 D.9︰16 【答案】D 【解析】解:△ABC与△DEF的相似比为3︰4,∴△ABC与△DEF的面积比为,即9︰16,故选D. 【方法指导】本题考查了相似三角形的面积比与相似比的关系.相似三角形的对应边、对应高、对应周长比都等于相似比,而面积的比等于相似比的平方;反过来,相似图形对应边、对应高、对应周长的比都等于面积比的算术平方根. 【关键词】相似三角形 相似比 【易错警示】不要误认为面积比等于相似比的算术平方根. 15.(2013四川雅安,8,3分) 如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S四边形BCED的值为( ) A.1∶3 B.2∶3 C.1∶4 D.2∶5 【答案】A 【解析】易知S△ADE∶S四边形BCED=1∶3,S△ADE=S△CEF,所以S△CEF∶S四边形BCED=1∶3. 【方法指导】本题考查的知识点有:三角形中位线的性质,相似三角形的性质,全等三角形的判定.虽有综合性,但难度不大. 二.填空题 1.(2013白银,14,4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米. 考点: 相似三角形的应用. 分析: 易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长. 解答: 解:根据题意,易得△MBA∽△MCO, 根据相似三角形的性质可知=,即=, 解得AM=5m.则小明的影长为5米. 点评: 本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长. 2.(2013广西钦州,16,3分)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是 1:4 . 考点: 相似三角形的判定与性质;三角形中位线定理. 分析: 由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果. 解答: 解:∵DE是△ABC的中位线, ∴DE∥BC,且DE=BC, ∴△ADE∽△ABC,相似比为1:2, ∵相似三角形的面积比是相似比的平方, ∴△ADE与△ABC的面积的比为1:4(或). 点评: 本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方. 3.(2013贵州安顺,15,4分)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= . 考点:相似三角形的判定与性质;平行四边形的性质. 分析:由题可知△ABF∽△CEF,然后根据相似比求解. 解答:解:∵DE:EC=1:2 ∴EC:CD=2:3即EC:AB=2:3 ∵AB∥CD, ∴△ABF∽△CEF, ∴BF:EF=AB:EC=3:2. ∴BF:BE=3:5. 点评:此题主要考查了平行四边形、相似三角形的性质. 4.(2013湖南长沙,16,3分)如图,在⊿ABC中,点D,点E分别是边AB,AC的中点,则⊿ADE与⊿ABC的周长之比等于 . 答案:1:2 【详解】由于点D、E分别是AB、AC的中点,即DE是△ABC的中位线,所以DE∥BC、且DE=0.5BC,所以△ADE∽△ABC,两三角形的周长比等于相似比,即为0.5:1=1:2。 5.(2013四川巴中,18,3分)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米 . 考点: 相似三角形的应用. 分析: 根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解. 解答: 解:∵DE∥BC, ∴△ADE∽△ACB,即=, 则=, ∴h=1.5m. 故答案为:1.5米. 点评: 本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题. 6.(2013贵州省六盘水,13,4分)如图,添加一个条件: ∠ADE=∠ACB(答案不唯一) ,使△ADE∽△ACB,(写出一个即可) 考点: 相似三角形的判定. 专题: 开放型. 分析: 相似三角形的判定有三种方法: ①三边法:三组对应边的比相等的两个三角形相似; ②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似; ③两角法:有两组角对应相等的两个三角形相似. 由此可得出可添加的条件. 解答: 解:由题意得,∠A=∠A(公共角), 则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB. 故答案可为:∠ADE=∠ACB. 点评: 本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一. 7.(2013山东菏泽,14,3分)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时, EP+BP=____________. A B C D E P F Q (第14题) 【答案】12. 【解析】延长BQ角射线EF于M. ∵E、F分别是AB、AC的中点,∴EF//BC,即EM//BC. ∴△EQM∽△EQB,∴, 即,∴EM=12. ∵∠CBP的平分线交CE于Q,∴∠PBM=∠CBM, ∵EM//BC,∴∠EMB=∠CBM, ∴∠PBM=∠EMB,∴PB=PM,所以EP+BP=EM=12. 【方法指导】本题考查三角形相似、三角形中位线性质、角平分线意义等.本题是一道动点型问题,解题时要善于从“动中求静,联想关联知识”. 8.(2013江苏泰州,15,3分)如图,平面直角坐标系xOy中,点A, B的坐标分别为(3, 0),(2,-3),则△AB' O' 是△ABO关于点A的位似图形,且O'的坐标为(一1, 0),则点B' 的坐标为___________. 【答案】. 【解析】∵△AB' O' 是△ABO关于点A的位似图形,且O'的坐标为(一1, 0),∴AO'=4,即AO:AO'=3:4,根据相似三角形性质,△AB' O' 与△ABO的过点B' 与B的高之比等于位似比3:4,∵B(2,-3),B' . 【方法指导】两个位似图形对应点的连线必过位似中心,位似比等于对应高之比、等于相似比. 三.解答题 1.(2013年佛山市,17,6分)网格图中每个方格都是边长为1的正方形. 若A,B,C,D,E,F都是格点, 试说明△ABC∽△DEF. 分析:利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC∽△DEF. 解:证明:∵AC=,BC==,AB=4,DF==2,EF==2,ED=8, ∴===2, ∴△ABC∽△DEF. 点评:本题考查了相似三角形的判定、勾股定理.相似三角形相似的判定方法有: (1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似; 这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形; (2)三边法:三组对应边的比相等的两个三角形相似; (3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似; (4)两角法:有两组角对应相等的两个三角形相似. 2.(2013广东珠海,21,9分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E. (1)求证:∠CBP=∠ABP; (2)求证:AE=CP; (3)当,BP′=5时,求线段AB的长. 考点: 全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质. 专题: 几何综合题. 分析: (1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可; (2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证; (3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可. 解答: (1)证明:∵AP′是AP旋转得到, ∴AP=AP′, ∴∠APP′=∠AP′P, ∵∠C=90°,AP′⊥AB, ∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°, 又∵∠BPC=∠APP′(对顶角相等), ∴∠CBP=∠ABP; (2)证明:如图,过点P作PD⊥AB于D, ∵∠CBP=∠ABP,∠C=90°, ∴CP=DP, ∵P′E⊥AC, ∴∠EAP′+∠AP′E=90°, 又∵∠PAD+∠EAP′=90°, ∴∠PAD=∠AP′E, 在△APD和△P′AE中,, ∴△APD≌△P′AE(AAS), ∴AE=DP, ∴AE=CP; (3)解:∵=, ∴设CP=3k,PE=2k, 则AE=CP=3k,AP′=AP=3k+2k=5k, 在Rt△AEP′中,P′E==4k, ∵∠C=90°,P′E⊥AC, ∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°, ∵∠BPC=∠EPP′(对顶角相等), ∴∠CBP=∠P′PE, 又∵∠BAP′=∠P′EP=90°, ∴△ABP′∽△EPP′, ∴=, 即=, 解得P′A=AB, 在Rt△ABP′中,AB2+P′A2=BP′2, 即AB2+AB2=(5)2, 解得AB=10. 点评: 本题考查了全等三角形的判定与性质,旋转的性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DP并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出P′A=AB是解题的关键. 3.(2013湖南娄底,25,10分)如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H. (1)求证:; (2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积; (3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围. 考点: 相似形综合题. 分析: (1)由相似三角形,列出比例关系式,即可证明; (2)首先求出矩形EFPQ面积的表达式,然后利用二次函数求其最大面积; (3)本问是运动型问题,要点是弄清矩形EFPQ的运动过程: (I)当0≤t≤2时,如答图①所示,此时重叠部分是一个矩形和一个梯形; (II)当2<t≤4时,如答图②所示,此时重叠部分是一个三角形. 解答: (1)证明:∵矩形EFPQ, ∴EF∥BC,∴△AHF∽△ADC,∴, ∵EF∥BC,∴△AEF∽△ABC,∴, ∴. (2)解:∵∠B=45°,∴BD=AD=4,∴CD=BC﹣BD=5﹣4=1. ∵EF∥BC,∴△AEH∽△ABD,∴, ∵EF∥BC,∴△AFH∽△ACD,∴, ∴,即,∴EH=4HF, 已知EF=x,则EH=x. ∵∠B=45°,∴EQ=BQ=BD﹣QD=BD﹣EH=4﹣x. S矩形EFPQ=EF•EQ=x•(4﹣x)=﹣x2+4x=﹣(x﹣)2+5, ∴当x=时,矩形EFPQ的面积最大,最大面积为5. (3)解:由(2)可知,当矩形EFPQ的面积最大时,矩形的长为,宽为4﹣×=2. 在矩形EFPQ沿射线AD的运动过程中: (I)当0≤t≤2时,如答图①所示. 设矩形与AB、AC分别交于点K、N,与AD分别交于点H1,D1. 此时DD1=t,H1D1=2, ∴HD1=HD﹣DD1=2﹣t,HH1=H1D1﹣HD1=t,AH1=AH﹣HH1=2﹣t,. ∵KN∥EF,∴,即,得KN=(2﹣t). S=S梯形KNFE+S矩形EFP1Q1=(KN+EF)•HH1+EF•EQ1 = [(2﹣t)+]×t+(2﹣t) =t2+5; (II)当2<t≤4时,如答图②所示. 设矩形与AB、AC分别交于点K、N,与AD交于点D2. 此时DD2=t,AD2=AD﹣DD2=4﹣t, ∵KN∥EF,∴,即,得KN=5﹣t. S=S△AKN=KN•AD2 =(5﹣t)(4﹣t) =t2﹣5t+10. 综上所述,S与t的函数关系式为: S=. 点评: 本题是运动型相似三角形压轴题,考查了相似三角形的判定与性质、二次函数的表达式与最值、矩形、等腰直角三角形等多个知识点,涉及考点较多,有一定的难度.难点在于第(3)问,弄清矩形的运动过程是解题的关键. 4. (2013江苏南京,27,10分)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个 三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为 逆相似。例如,如图,△ABC~△A’B’C’且沿周界ABCA与A’B’C’A’环绕的方向相同, 因此△ABC 与△A’B’C’互为顺相似;如图,△ABC~△A’B’C’,且沿周界ABCA与 A’B’C’A’环绕的方向相反,因此△ABC 与△A’B’C’互为逆相似。 k A B C j A B C A’ B’ C’ A’ B’ C’ (1) 根据图I、图II和图III满足的条件,可得下列三对相似三角形: △ADE与△ABC; △GHO与△KFO; △NQP与△NMQ。其中,互为顺相似的是 ;互为逆相似的是 。(填写所有符合要求的序号) (2) 如图,在锐角△ABC中,ÐA<ÐB<ÐC,点P在△ABC的边上(不与点A、B、C重 合)。过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似。请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明 A B C l 理由。 解析: (1) jk;l (4分) (2) 解:根据点P在△ABC边上的位置分为以下三种情况。 第一种情况:如图j,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、 PQ2,分别使ÐCPQ1=ÐA,ÐBPQ2=ÐA,此时△PQ1C、△PBQ2都与△ABC互为逆相似。 第二种情况:如图k,点P在AC(不含点A、C)上,过点B作ÐCBM=ÐA,BM交AC 于点M。 当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使ÐAP1Q=ÐABC,此 时△AP1Q与△ABC互为逆相似; 当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使ÐAP2Q1=ÐABC, ÐCP2Q2=ÐABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似。 第三种情况:如图l,点P在AB(不含点A、B)上,过点C作ÐBCD=ÐA,ÐACE=ÐB, CD、CE分别交AC于点D、E。 当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使ÐAP1Q=ÐABC,此时 △AQP1与△ABC互为逆相似; 当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使ÐAP2Q1=ÐACB, ÐBP2Q2=ÐBCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似; 当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q’,使ÐBP3Q’=ÐBCA, 此时△Q’BP3与△ABC互为逆相似。 (10分) A B C Q1 P j Q2 A B C Q1 M Q2 Q P1 P2 A B C Q1 Q’ Q P1 P2 D’ E Q2 P3 k l 5.[2013湖南邵阳,26,10分] 如图(十二)所示,在Rt△ABC中,AB=BC=4,∠ABC=90°.点P是△ABC外角∠BCN的角平分线上一个动点,点P/是点P关于直线BC的对称点,连结PP/交BC于点M、BP/交AC于点D,连结BP、AP/、CP/. (1)若四边形BPCP/为菱形,求BM的长; (2)若△BMP/∽△ABC,求BM的长; (3)若△ABD为等腰三角形,求△ABD的面积. 图(十一) ② ③ ① 知识考点:菱形的性质,相似三角形的性质,等腰三角形的性质,三角形面积计算. 审题要津:(1)根据菱形的对角线互相垂直平分即可求解;(2)根据勾股定理求解;(3)根据面积公式求解. 满分解答:解:(1)∵四边形BPCP/是菱形, ∴BC与PP/互相平分, ∴BM=BC=3. (2)∵△BMP/∽△ABC,且△ABC是等腰直角三角形, ∴△BMP/是等腰直角三角形, ∴BM=MP/,∠BPP/=45°. ∵P与P/关于直线BC对称, ∴∠BPM=45°,PM=MP/, ∴BM=MP. ∵CP平分∠NCB, ∴∠BCP=∠BCN=(180° - 45°)=67.5°. 又∵∠CPM=90°-∠BCP=90°-67.5°=22.5°, ∴∠BPC=∠BPM+∠CPM=45°+22.5°=67.5°, ∴∠BCP=∠BPC, ∴BP=BC=6. 在Rt△BMP中, ∵BM2+MP2=BP2, 2BM2=62,∴BM=3. (3)由题意,知∠BAD=45°. ①当AB=AD时,过点D作DE⊥AB,垂足为D. 在Rt△AED中,DE=AD·sin∠DAB=6×sin45°=3, 此时△ABD的面积为:AB·DE =×6×3 =9. Error! No bookmark name given.②当AD=BD时,有∠ABD=∠BAD=45°, ∴∠ADB=90°, ∴BD⊥AC, ∵△ABC是等腰在解三角形,且AB=BC, ∴D为AC的中点, ∴△ABD的面积为△ABC面积的一半, ∴△ABC的面积为×AB·AC=×6×6=9. ③当AB=BD时,∵∠BAD=45 , ∴∠ABC=90°,此时△ABD就是△ABC, ∴△ABD的面积为AB·BD=AB·BC=×6×6=18. 综上所述,△ABD的面积为9,或9,或18. 名师点评:本题是一道综合性压轴题,题目难度较大,解题时注意转换思想的运用.Error! No bookmark name given. 6.(2013·泰安,26,?分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点, (1)求证:AC2=AB•AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求的值. 考点:相似三角形的判定与性质;直角三角形斜边上的中线. 分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD; (2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD; (3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值. 解答:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB, ∵∠ADC=∠ACB=90°,∴△ADC∽△ACB, ∴AD:AC=AC:AB,∴AC2=AB•AD; (2)证明:∵E为AB的中点,∴CE=AB=AE, ∴∠EAC=∠ECA, ∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD; (3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF, ∵CE=AB,∴CE=×6=3, ∵AD=4,∴,∴. 点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用. 7. (2013•绍兴12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上. (1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD. (2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值. 【思路分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD; (2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值. 【解析】(1)证明:如图1, 在△ABC中,∵∠CAB=90°,AD⊥BC于点D, ∴∠CAD=∠B=90°﹣∠ACB. ∵AC:AB=1:2,∴AB=2AC, ∵点E为AB的中点,∴AB=2BE, ∴AC=BE. 在△ACD与△BEF中, , ∴△ACD≌△BEF, ∴CD=EF,即EF=CD; (2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q, ∵EH⊥AD,EQ⊥BC,AD⊥BC, ∴四边形EQDH是矩形, ∴∠QEH=90°, ∴∠FEQ=∠GEH=90°﹣∠QEG, 又∵∠EQF=∠EHG=90°, ∴△EFQ∽△EGH, ∴EF:EG=EQ:EH. ∵AC:AB=1:,∠CAB=90°, ∴∠B=30°. 在△BEQ中,∵∠BQE=90°, ∴sin∠B==, ∴EQ=BE. 在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°, ∴cos∠AEH==, ∴EH=AE. ∵点E为AB的中点,∴BE=AE, ∴EF:EG=EQ:EH=BE:AE=1:. 【方法指导】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形. 8.(2013上海市,24,12分)如图9,在平面直角坐标系中,顶点为的抛物线经过点和轴正半轴上的点,= 2,. (1)求这条抛物线的表达式; (2)联结,求的大小; (3)如果点在轴上,且△与△相似,求点的坐标. 9.(2013陕西,20,8分) 一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m) B A E C D N M 第21题图 考点:此题考查稳定,就是考查解直角三角形,或者考查的是相似三角形的应用测量高度,宽度等线段的长度的具体计算,将问题转换成方程(组)来求解,经常设置的具体的实际情景得到与测量相关的计算; 解析:本题考查的是典型的测量问题之中心投影下的测量,而此问题设置基本上就是应用相似的性质来将实际问题转化成数学问题来解决, 解:如图,设CD长为m ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA ∴MA∥CD,BN∥CD,∴EC=CD=,∴△ABN∽△ACD ∴ 即 解得 所以路灯高CD约为6.1米 10.(2013四川巴中,29,10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长. 考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质. 分析: (1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC; (2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 年中 数学试卷 分类 汇编 图形 相似
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文