分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型双曲线知识点归纳与例题分析.doc

  • 上传人:w****g
  • 文档编号:2227461
  • 上传时间:2024-05-23
  • 格式:DOC
  • 页数:9
  • 大小:439.95KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    双曲线 知识点 归纳 例题 分析
    资源描述:
    双曲线 基本知识点 双曲线 标准方程(焦点在轴) 标准方程(焦点在轴) 定义 第一定义:平面内与两个定点,的距离的差的绝对值是常数(小于)的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 P P 第二定义:平面内与一个定点和一条定直线的距离的比是常数,当时,动点的轨迹是双曲线。定点叫做双曲线的焦点,定直线叫做双曲线的准线,常数()叫做双曲线的离心率。 P P P P 范围 , , 对称轴 轴 ,轴;实轴长为,虚轴长为 对称中心 原点 焦点坐标 焦点在实轴上,;焦距: 顶点坐标 (,0) (,0) (0, ,) (0,) 离心率 1) 准线方程 准线垂直于实轴且在两顶点的内侧;两准线间的距离: 顶点到准线的距离 顶点()到准线()的距离为 顶点()到准线()的距离为 焦点到准线的距离 焦点()到准线()的距离为 焦点()到准线()的距离为 渐近线 方程 共渐近线的双曲线系方程 () () 直线和双曲线的位置 双曲线与直线的位置关系: 利用转化为一元二次方程用判别式确定。 二次方程二次项系数为零直线与渐近线平行。 相交弦AB的弦长 通径: 补充知识点: 等轴双曲线的主要性质有: (1)半实轴长=半虚轴长(一般而言是a=b,但有些地区教材版本不同,不一定用的是a,b这两个字母); (2)其标准方程为x^2-y^2=C,其中C≠0; (3)离心率e=√2; (4)渐近线:两条渐近线 y=±x 互相垂直; (5)等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项; (6)等轴双曲线上任意一点P处的切线夹在两条渐近线之间的线段,必被P所平分; (7)等轴双曲线上任意一点处的切线与两条渐近线围成三角形的面积恒为常数a^2; (8)等轴双曲线x^2-y^2=C绕其中心以逆时针方向旋转45°后,可以得到XY=a^2/2,其中C≠0。 所以反比例函数y=k/x的图像一定是等轴双曲线。 例题分析: 例1、动点与点与点满足,则点的轨迹方程为(  ) A. B. C. D. 同步练习一:如果双曲线的渐近线方程为,则离心率为(  ) A. B. C.或 D. 例2、已知双曲线的离心率为,则的范围为(  ) A. B. C. D. 同步练习二:双曲线的两条渐近线互相垂直,则双曲线的离心率为     . 例3、设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为     . 同步练习三:若双曲线的两个焦点分别为,且经过点,则双曲线的标准方程为    。 例4、下列各对曲线中,即有相同的离心率又有相同渐近线的是 (A)-y2=1和-=1 (B)-y2=1和y2-=1 (C)y2-=1和x2-=1 (D)-y2=1和-=1 同步练习四:已知双曲线的中心在原点,两个焦点分别为和,点在双曲线上且,且的面积为1,则双曲线的方程为(  ) A. B. C. D. 例5、与双曲线有共同的渐近线,且经过点A的双曲线的一个焦点到一条渐近线的距离是( ) (A)8 (B)4 (C)2 (D)1 同步练习五:以为渐近线,一个焦点是F(0,2)的双曲线方程为( ) 例6、下列方程中,以x±2y=0为渐近线的双曲线方程是 (A) 同步练习六:双曲线8kx2-ky2=8的一个焦点是(0,3),那么k的值是 例7、经过双曲线的右焦点F2作倾斜角为30°的弦AB, (1)求|AB|. (2)F1是双曲线的左焦点,求△F1AB的周长. 同步练习七过点(0,3)的直线l与双曲线只有一个公共点,求直线l的方程。 高考真题分析 1.【2012高考新课标文10】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【答案】C 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得=,∵=,∴=,解得=2, ∴的实轴长为4,故选C. 2.【2012高考山东文11】已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 (A)  (B)   (C)  (D) 【答案】D 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a,b,c的关系可知,此题应注意C2的焦点在y轴上,即(0,p/2)到直线的距离为2,可知p=8或数形结合,利用直角三角形求解。 3.【2012高考全国文10】已知、为双曲线的左、右焦点,点在上,,则 (A) (B) (C) (D) 【答案】C 【命题意图】本试题主要考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用。首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。 【解析】解:由题意可知,,设,则,故,,利用余弦定理可得。 4.(2011年高考湖南卷文科6)设双曲线的渐近线方程为则的值为( ) A.4 B.3 C.2 D.1 答案:C 解析:由双曲线方程可知渐近线方程为,故可知。 5.【2012高考辽宁文15】已知双曲线x2 y2 =1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1⊥P F2,则∣P F1∣+∣P F2∣的值为___________________. 【答案】 【命题意图】本题主要考查双曲线的定义、标准方程以及转化思想和运算求解能力,难度适中。 【解析】由双曲线的方程可知 【点评】解题时要充分利用双曲线的定义和勾股定理,实现差—积—和的转化。 6.【2012高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 . 【答案】2。 【考点】双曲线的性质。 【解析】由得。 ∴,即,解得。 课后作业 1.双曲线的实轴长和虑轴长分别是( ) A. ,4 B.4, C.3,4 D. 2, 2.双曲线的焦点到它的渐近线的距离等于( ) A. B. C. D. 3.如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A. B. C. D.2 4.双曲线的渐近方程是,焦点在坐标轴一,焦距为10,其方程为( ) A. B. 或 C. D. 5.双曲线的右准线与渐近线在第一象限的交点和右焦点连线的斜率是( ) A. B. C. D. 6.双曲线的两条渐近线所成的角是( ) A. B. C. D. 7.双曲线与其共轭双曲线有( ) A.相同的焦点 B. 相同的准线 C. 相同的渐近线 D. 相等的实轴长 8.已知双曲线的渐近线方程为,则此双曲线的 ( ) A.焦距为10 B.实轴长与虚轴长分别为8与6 C.离心率只能是或 D.离心率不可能是或 9.等轴双曲线的一个焦点是F1(4,0),则它的标准方程是 ,渐近线方程是 10.若双曲线的实轴长,虚轴长,焦距依次成等差数列,则其离心率为_____________ 11.若双曲线上的一点P到它的右焦点的距离是8,则到它的右准线之间的距离为 12.若双曲线的一条渐近线方程为,左焦点坐标为,则它的两条准线之间的距离为_______________ 13.写出满足下列条件的双曲线的标准方程: (1)双曲线的两个焦点是椭圆的两个顶点,双曲线的两条准线经过这个椭圆的两个焦点:______________________ (2)双曲线的渐近线方程为,两顶点之间的距离为2:____________________ 14.双曲线的其中一条渐近线的斜率为,求此双曲线的离心率___________ 15.已知双曲线的右顶点为A,而B、C是双曲线右支上的两点,如果是正三角形,则的取值范围是_____________________ 16.设圆过双曲线的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_____________________ 17.已知双曲线上一点M到左焦点F1的距离是它到右焦点距离的5倍,则M点的坐标为_________________ 18.已知直线过定点(0,1),与双曲线的左支交于不同的两点A、B,过线段AB的中点M与定点的直线交轴于,求的取值范围. 19.已知双曲线 (1)过右焦点F2作一条渐近线的垂线(垂中为A),交另一渐近线于B点,求证:线段AB被双曲线的左准线平分; (2)过中心O作直线分别交双曲线于C、D两点,且的面积为20,求直线CD的方程。 20.P为双曲线()上一点,轴于M,射线MP交渐近线于Q。求证:是定值。 9
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:双曲线知识点归纳与例题分析.doc
    链接地址:https://www.zixin.com.cn/doc/2227461.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork