双曲线专题复习讲义及练习.doc
《双曲线专题复习讲义及练习.doc》由会员分享,可在线阅读,更多相关《双曲线专题复习讲义及练习.doc(20页珍藏版)》请在咨信网上搜索。
1、(完整版)双曲线专题复习讲义及练习双曲线专题复习讲义知识梳理1. 双曲线的定义(1)第一定义:当时, 的轨迹为双曲线; 当时, 的轨迹不存在; 当时, 的轨迹为以为端点的两条射线(2)双曲线的第二义平面内到定点与定直线(定点不在定直线上)的距离之比是常数()的点的轨迹为双曲线2。 双曲线的标准方程与几何性质标准方程性质焦点, 焦距范围顶点对称性关于x轴、y轴和原点对称离心率准线渐近线与双曲线共渐近线的双曲线系方程为:与双曲线共轭的双曲线为等轴双曲线的渐近线方程为 ,离心率为.; 重难点突破1。注意定义中“陷阱问题1:已知,一曲线上的动点到距离之差为6,则双曲线的方程为 点拨:一要注意是否满足,
2、二要注意是一支还是两支 ,的轨迹是双曲线的右支.其方程为2。注意焦点的位置问题2:双曲线的渐近线为,则离心率为 点拨:当焦点在x轴上时,;当焦点在y轴上时,,热点考点题型探析考点1 双曲线的定义及标准方程题型1:运用双曲线的定义例1 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置。(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的解析如图,以接报中心为
3、原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(1020,0),B(1020,0),C(0,1020)设P(x,y)为巨响为生点,由A、C同时听到巨响声,得PA|=PC|,故P在AC的垂直平分线PO上,PO的方程为y=x,因B点比A点晚4s听到爆炸声,故PB PA|=3404=1360由双曲线定义知P点在以A、B为焦点的双曲线上,ABCPOxy依题意得a=680, c=1020,用y=x代入上式,得,|PB|PA|,答:巨响发生在接报中心的西偏北450距中心处.【名师指引】解应用题的关键是将实际问题转换为“数学模型”【新题导练】1。设P为双曲线
4、上的一点F1、F2是该双曲线的两个焦点,若|PF1|:PF2=3:2,则PF1F2的面积为( )AB12CD24解析: 又由、解得直角三角形,故选B.2。如图2所示,为双曲线的左焦点,双曲线上的点与关于轴对称,则的值是( )A9 B16 C18 D27 解析 ,选C3。 P是双曲线左支上的一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心的横坐标为( )(A)(B)(C)(D)解析设的内切圆的圆心的横坐标为,由圆的切线性质知, 题型2 求双曲线的标准方程例2 已知双曲线C与双曲线=1有公共焦点,且过点(3,2)。求双曲线C的方程【解题思路】运用方程思想,列关于的方程组解析 解法一
5、:设双曲线方程为=1.由题意易求c=2.又双曲线过点(3,2),=1。又a2+b2=(2)2,a2=12,b2=8。故所求双曲线的方程为=1。解法二:设双曲线方程为1,将点(3,2)代入得k=4,所以双曲线方程为1.【名师指引】求双曲线的方程,关键是求a、b,在解题过程中应熟悉各元素(a、b、c、e及准线)之间的关系,并注意方程思想的应用。【新题导练】4.已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 解析设双曲线方程为,当时,化为,当时,化为,综上,双曲线方程为或5.以抛物线的焦点为右焦点,且两条渐近线是的双曲线方程为_.解析 抛物线的焦点为,设双曲线方程为,双
6、曲线方程为6.已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为A BC(x 0) D解析,点的轨迹是以、为焦点,实轴长为2的双曲线的右支,选B考点2 双曲线的几何性质题型1 求离心率或离心率的范围例3 已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为 【解题思路】这是一个存在性问题,可转化为最值问题来解决解析(方法1)由定义知,又已知,解得,在中,由余弦定理,得,要求的最大值,即求的最小值,当时,解得即的最大值为(方法2) ,双曲线上存在一点P使,等价于 (方法3)设,由焦半径公式得,,,的最大值为【名师指引】(1)解法1用余弦定理
7、转化,解法2用定义转化,解法3用焦半径转化;(2)点P在变化过程中,的范围变化值得探究;(3)运用不等式知识转化为的齐次式是关键【新题导练】7.已知双曲线的一条渐近线方程为,则该双曲线的离心率为 解析当时,,,当时,或8. 已知双曲线的右顶点为E,双曲线的左准线与该双曲线的两渐近线的交点分别为A、B两点,若AEB=60,则该双曲线的离心率e是( )A B2 C或2 D不存在解析设双曲线的左准线与x轴交于点D,则,题型2 与渐近线有关的问题例4若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A。 B。 C。 D.【解题思路】通过渐近线、离心率等几何元素,沟通的关系解析 焦点到渐
8、近线的距离等于实轴长,故,所以【名师指引】双曲线的渐近线与离心率存在对应关系,通过的比例关系可以求离心率,也可以求渐近线方程【新题导练】9。 双曲线的渐近线方程是 ( )A. B。 C. D. 解析选C10.焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是 ( )A B C D解析从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B基础巩固训练1。 以椭圆的右焦点为圆心,且与双曲线的渐近线相切的圆的方程是 (A) (B) (C) (D)解析椭圆与双曲线共焦点,焦点到渐近线的距离为b,选A 2.已知双曲线的两个焦点为、,是此双曲线上的一点,且满足,,则该双曲线的方程是()A B C D
9、 解析由 和得,选A3。两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率为( ) A B C D解析 ,选D4。设,分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为( C )A B1C2D不确定解析 C. 设,,5。已知F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若ABF2是锐角三角形,则该双曲线离心率的取值范围是( )(A). (B). (C)。 (D).解析 ,选B6.曲线与曲线的( )A焦距相等 B焦点相同 C离心率相等 D以上都不对解析 方程的曲线为焦点在x轴的椭圆,方程的曲线为焦点在y轴的双曲线,
10、故选A综合提高训练7. 已知椭圆和双曲线有公共的焦点,(1)求双曲线的渐近线方程(2)直线过焦点且垂直于x轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程 解析(1)依题意,有,即,即双曲线方程为,故双曲线的渐近线方程是,即,(2)设渐近线与直线交于A、B,则,解得即,又,双曲线的方程为8。已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;解析,.的一条渐进线方程为 ,又 由得9.已知中心在原点的双曲线C的右焦点为,右顶点为.()求双曲线C的方程()若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围
11、解(1)设双曲线方程为由已知得,再由,得故双曲线的方程为。(2)将代入得 由直线与双曲线交与不同的两点得 即且. 设,则,由得,而。于是,即解此不等式得 由+得故的取值范围为参考例题:已知双曲线C:的两个焦点为,点P是双曲线C上的一点,且(1)求双曲线的离心率;(2)过点P作直线分别与双曲线的两渐近线相交于两点,若,,求双曲线C的方程(1)设,则,(2)由(1)知,故,从而双曲线的渐近线方程为,依题意,可设,由,得 由,得,解得点在双曲线上,又,上式化简得 由,得,从而得故双曲线C的方程为双曲线专题练习一一、填空题 1椭圆与双曲线的焦点相同,则k= .2双曲线的渐近线为 两渐近线夹角为 。 3
12、已知为椭圆的两个焦点,为它的短轴的一个端点,若该椭圆的长轴长为,则面积的最大值为 4过点(-6,3)且和双曲线x22y2=2有相同的渐近线的双曲线方程为 。 5过原点与双曲线 交于两点的直线斜率的取值范围是 6、若双曲线的一个焦点是(0,3),则k的值是 。7. 已知直线y=kx1与双曲线,试列出实数k需满足的不等式组,使直线与双曲线交同支于两点, 。8点P是双曲线上一点,F1、F2是双曲线焦点,若F1PF2=120o,则DF1PF2的面积 。9过点(,)的直线L与椭圆x22y22交于、两点,线段的中点为,设直线l的斜率为k1(k10),直线的斜率为k2,则k1k2的值为_。10若对任意kR,
13、直线与双曲线总有公共点,则b范围 。11若方程x+k=0只有一个解,则实数k的取值范围是_. 12给出问题:F1、F2是双曲线=1的焦点,点P在双曲线上。若点P到焦点F1的距离等于9,求点P到焦点F2的距离.某学生的解答如下:双曲线的实轴长为8,由 |PF1|PF2|=8,即|9|PF2=8,得PF2|=1或17. 该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内. 。二、选择题13。平面内有定点A、B及动点P,设命题甲是“|PA+PB|是定值,命题乙是“点P的轨迹是以A、B为焦点的椭圆”,那么甲是乙的 ( )A充分不必要条件 B必要不充分条件
14、 C充要条件 D既不充分也不必要条件14。 经过双曲线的右焦点作直线交双曲线与、两点,若|AB|=4,则这样的直线存在的条数为 ( )(A);(B)3;(C)2;(D)15双曲线与其共轭双曲线有 ( )A相同的焦点 B。 相同的渐近线 C.相等的实轴长 D。 相等的虚轴长16过点P(3,4)与双曲线只有一个交点的直线的条数为 ( )A4 B。 3 C。2 D。 1三、解答题17已知动圆与圆C1:(x+5)2+y2=49和圆C2:(x5)2+y2=1都外切, (1)求动圆圆心P的轨迹方程。 (2)若动圆P与圆C2内切,与圆C1外切,则动圆圆心P的轨迹是 。 若动圆P与圆C1内切,与圆C2外切,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 专题 复习 讲义 练习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。