计算方法实验指导书.doc
《计算方法实验指导书.doc》由会员分享,可在线阅读,更多相关《计算方法实验指导书.doc(12页珍藏版)》请在咨信网上搜索。
1、个人收集整理 勿做商业用途数值分析 课程实验指导书实验一 函数插值方法 一、问题提出 对于给定的一元函数的n+1个节点值。试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。数据如下: (1) 0.4 0.55 0。65 0。80 0。95 1.05 0.41075 0.578150。696750.90 1.00 1。25382 求五次Lagrange多项式,和分段三次插值多项式,计算,的值。(提示:结果为, ) (2) 1 2 3 4 5 6 7 0。368 0。135 0。050 0。018 0.007 0。002 0。001 试构造Lagrange多项式,计算的,
2、值.(提示:结果为, )二、要求 1、 利用Lagrange插值公式 编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式; 3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、 对此插值问题用Newton插值多项式其结果如何.Newton插值多项式如下: 其中: 三、目的和意义 1、 学会常用的插值方法,求函数的近似表达式,以解决其它实际问题; 2、 明确插值多项式和分段插值多项式各自的优缺点; 3、 熟悉插值方法的程序编制; 4、 如果绘出插值函数的曲线,观察其光滑性。 四、实验学时:2学时五、实验步骤: 1进入C或matlab开发环境;2根据实
3、验内容和要求编写程序;3调试程序;4运行程序;5撰写报告,讨论分析实验结果。实验二 函数逼近与曲线拟合 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。 t(分)0 5 10 15 20 25 30 35 40 45 50 55 0 1。27 2。16 2。86 3.44 3。87 4。15 4。37 4.51 4。58 4.02 4.64 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为;3、打印出拟合函数,并打
4、印出与的误差,; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、* 绘制出曲线拟合图。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。四、实验学时:2学时五、实验步骤: 1进入C或matlab开发环境;2根据实验内容和要求编写程序;3调试程序;4运行程序;5撰写报告,讨论分析实验结果实验三 数值积分与数值微分一、基本题 选用复合梯形公式,复合Simpson公式,Romberg算法,计算 (1) (2) (3) 二、应用题1。文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角
5、坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:9300万里)在五个不同的时间对小行星作了五次观察,测得轨道上五个点的坐标数据如下表所示: P1P2P3P4P5x坐标5.7646。2866。7597.1687.408y坐标0.6481。2021。8232.5267。408由开普勒第一定律知,小行星轨道为一椭圆,椭圆的一般方程可表示为: 现需要建立椭圆的方程以供研究.(1)分别将五个点的数据代入椭圆一般方程中,写出五个待定系数满足的等式,整理后写出线性方程组AX = b。(2)用MATLAB求低价方程组的指令A / b求出待定系数 。(3)卫星轨道是一个椭圆,其周长的计算公
6、式是: 式中,a是椭圆的半长轴, 是地球中心与轨道中心(椭圆中心)的距离, .其中h为近地点距离,H为远地点距离,R = 6371(km)为地球半径. 有一颗人造卫星近地点距离h = 439 (km),远地点距离H = 2384(km)。试分别按下列方案计算卫星轨道的周长,误差限取为 。三、要求 1、 编制数值积分算法的程序; 2、 分别用两种算法计算同一个积分,并比较其结果; 3、 分别取不同步长,试比较计算结果(如n = 10, 20等); 4、 给定精度要求,试用变步长算法,确定最佳步长。 四、目的和意义 1、 深刻认识数值积分法的意义; 2、 明确数值积分精度与步长的关系; 3、 根据
7、定积分的计算方法,结合专业考虑给出一个二重积分的计算问题. 五、实验学时:2学时六、实验步骤: 1进入C或matlab开发环境;2根据实验内容和要求编写程序;3调试程序;4运行程序;5撰写报告,讨论分析实验结果实验四 线方程组的直接解法一、问题提出 给出下列几个不同类型的线性方程组,请用适当算法计算其解。 1、 设线性方程组 2、 设对称正定阵系数阵线方程组 3、 三对角形线性方程组 二、要求 1、 对上述三个方程组分别利用Gauss顺序消去法与Gauss列主元消去法;平方根法与改进平方根法;追赶法求解(选择其一); 2、 应用结构程序设计编出通用程序; 3、 比较计算结果,分析数值解误差的原
8、因; 4、 尽可能利用相应模块输出系数矩阵的三角分解式。 三、目的和意义 1、通过该课题的实验,体会模块化结构程序设计方法的优点; 2、运用所学的计算方法,解决各类线性方程组的直接算法; 3、提高分析和解决问题的能力,做到学以致用; 4、 通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。 四、实验学时:2学时五、实验步骤: 1进入C或matlab开发环境;2根据实验内容和要求编写程序;3调试程序;4运行程序;5撰写报告,讨论分析实验结果实验五 解线性方程组的迭代法一、问题提出 对实验四所列目的和意义的线性方程组,试分别选用Jacobi 迭代法,GaussSeidel迭代法和SOR方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算方法 实验 指导书
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。