高中数学-第一章-三角函数-1.6-三角函数模型的简单应用(第2课时)教学设计-新人教A版必修4.doc
《高中数学-第一章-三角函数-1.6-三角函数模型的简单应用(第2课时)教学设计-新人教A版必修4.doc》由会员分享,可在线阅读,更多相关《高中数学-第一章-三角函数-1.6-三角函数模型的简单应用(第2课时)教学设计-新人教A版必修4.doc(9页珍藏版)》请在咨信网上搜索。
高中数学 第一章 三角函数 1.6 三角函数模型的简单应用(第2课时)教学设计 新人教A版必修4 高中数学 第一章 三角函数 1.6 三角函数模型的简单应用(第2课时)教学设计 新人教A版必修4 年级: 姓名: 1.6 三角函数模型的简单应用(第2课时) 一、导入新课 思路1.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等. 思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用. 二、推进新课、新知探究、提出问题 ①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?在指数、对数模型中是怎样处理搜集到的数据的? ②请做下题:若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则( ) A.ω=,φ= B.ω=,φ= C.ω=2,φ= D.ω=2,φ= 活动:这样的开头对学生来说是感兴趣的.教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,让学生尽快回忆到上节课的学习氛围中,使学生的思维状态进入到现在的情境中. 讨论结果:①略 ②D 三、应用示例 例1 货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0 (1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001). (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域? 活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生注意仔细准确观察散点图,如图6.教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值即可.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深. 图6 根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯. 在本例(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型.求货船停止卸货,将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候. 进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨. 解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图6). 根据图象,可以考虑用函数y=Asin(ωx+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出: A=2.5,h=5,T=12,φ=0, 由T==12,得ω=. 所以这个港口的水深与时间的关系可用y=2.5sinx+5近似描述. 由上述关系式易得港口在整点时水深的近似值: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 水深 5.000 6.250 7.165 7.5 7.165 6.250 5.000 3.754 2.835 2.500 2.835 3.754 时刻 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 水深 5.000 6.250 7.165 7.5 7.165 6.250 5.000 3.754 2.835 2.500 2.835 3.754 (2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港. 令2.5sinx+5=5.5,sinx=0.2. 由计算器可得 MODE MODE 2 SHIFT sin-1 0.2 = 0.201 357 92≈0.201 4. 如图7,在区间[0,12]内,函数y=2.5sinx+5的图象与直线y=5.5有两个交点A、B, 图7 因此x≈0.201 4,或π-x≈0.201 4. 解得xA≈0.384 8,xB≈5.615 2. 由函数的周期性易得:xC≈12+0.384 8=12.384 8,xD≈12+5.615 2=17.615 2. 因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右. 图8 (3)设在时刻x货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6—7时之间两个函数图象有一个交点(如图8). 通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域. 点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师引导学生利用计算器进行计算求解.同时需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释. 变式训练 发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数,IA=Isinωt,IB=Isin(ωt+120°),IC=Isin(ωt+240°),则IA+IB+IC=________. 答案:0 例2 图9是一个单摆的振动图象,据图象回答下列问题: (1)单摆振幅多大; (2)振动频率多高; (3)摆球速度首次具有最大负值的时刻和位置; (4)摆球运动的加速度首次具有最大负值的时刻和位置; (5)若当g=9.86 m/s2J,求摆线长. 活动:引导学生观察图象并思考,这个简谐运动的函数模型是什么?引导学生结合函数上例.点拨学生考虑最高点、最低点和平衡点.通过学生讨论、思考确定选用函数y=Asin(ωx+φ)来刻画单摆离开平衡位置的位移与时间之间的对应关系. 图9 解:结合函数模型和图象: (1)单摆振幅是1 cm; (2)单摆的振动频率为1.25 HZ; (3)单摆在0.6 s通过平衡位置时,首次具有速度的最大负值; (4)单摆在0.4 s时处正向最大位移处,首次具有加速度最大负值; (5)由单摆振动的周期公式T=2π,可得L==0.16 m. 点评:解决实际问题的关键是要归纳出数学函数模型,然后按数学模型处理.同时要注意检验,使所求得的结论符合问题的实际意义. 变式训练 1.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为. (1)求函数f(x)的解析式; (2)若sinx+f(x)=,求sinxcosx的值. 解:(1)∵f(x)为偶函数, ∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ). ∴φ=. ∴f(x)=sin(ωx+)=cosωx. 相邻两点P(x0,1),Q(x0+,-1). 由题意,|PQ|==π2+4.解得ω=1. ∴f(x)=cosx. (2)由sinx+f(x)=,得sinx+cosx=. 两边平方,得sinxcosx=. 2.小明在直角坐标系中,用1 cm代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么? 解:小明原作的曲线为y=sinx,x∈R,由于纵坐标改用了2 cm代表一个单位长度,与原来1 cm代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm只能代表个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y=sinx,x∈R.同理,若纵坐标保持不变,横坐标改用2 cm代表一个单位,则横坐标被压缩到原来的,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y=sin2x,x∈R. 3.求方程lgx=sinx实根的个数. 解:由方程式模型构建图象模型. 在同一坐标系内作出函数y=lgx和y=sinx的图象,如图10.可知原方程的解的个数为3. 图10 点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法. 四、课堂小结 1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用. 2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活的运用三角函数的图象和性质解决现实问题. 五、作业 图11 如图11,一滑雪运动员自h=50 m高处A点滑至O点,由于运动员的技巧(不计阻力),在O点保持速率v0不变,并以倾角θ起跳,落至B点,令OB=L,试问,当α=30°时,L的最大值为多少?当L取最大值时,θ为多大? 分析:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题. 解:由已知条件列出从O点飞出后的运动方程: 由①②,整理得v0cosθ=,v0sinθ=+gt. ∴v02+gLsinα=g2t2+≥2=gL. 运动员从A点滑至O点,机械守恒有mgh=mv02, ∴v02=2gh.∴L≤=200(m), 即Lmax=200(m). 又g2t2==, ∴t=,s=Lcosα=v0tcosθ=2gh··cosθ, 得cosθ=cosα.∴θ=α=30°. ∴L最大值为200米,当L最大时,起跳倾角为30°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 第一章 三角函数 1.6 模型 简单 应用 课时 教学 设计 新人 必修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:高中数学-第一章-三角函数-1.6-三角函数模型的简单应用(第2课时)教学设计-新人教A版必修4.doc
链接地址:https://www.zixin.com.cn/doc/2208894.html
链接地址:https://www.zixin.com.cn/doc/2208894.html