全国通用版高中数学第十章概率重点归纳笔记.pdf
《全国通用版高中数学第十章概率重点归纳笔记.pdf》由会员分享,可在线阅读,更多相关《全国通用版高中数学第十章概率重点归纳笔记.pdf(12页珍藏版)》请在咨信网上搜索。
(名师选题名师选题)全国通用版高中数学第十章概率重点归纳笔记全国通用版高中数学第十章概率重点归纳笔记 单选题 1、已知事件A与事件B是互斥事件,则()A()=0B()=()()C()=1 ()D()=1 答案:D 分析:根据互斥事件、对立事件、必然事件的概念可得答案.因为事件A与事件B是互斥事件,、不一定是互斥事件,所以()不一定为 0,故 A 错误;因为 =,所以()=0,而()()不一定为 0,故 B 错误;因为事件A与事件B是互斥事件,不一定是对立事件,所以 C 错误;因为事件A与事件B是互斥事件,是必然事件,所以()=1,故 D 正确.故选:D.2、某种心脏手术,成功率为 0.6,现采用随机模拟方法估计“3 例心脏手术全部成功”的概率:先利用计算器或计算机产生 09 之间取整数值的随机数,由于成功率是 0.6,我们用 0,1,2,3 表示手术不成功,4,5,6,7,8,9 表示手术成功;再以每 3 个随机数为一组,作为 3 例手术的结果,经随机模拟产生如下 10 组随机数:812,832,569,683,271,989,730,537,925,907 由此估计“3 例心脏手术全部成功”的概率为()A0.2B0.3C0.4D0.5 答案:A 分析:由题可知 10 组随机数中表示“3 例心脏手术全部成功”的有 2 组,即求.解:由题意,10 组随机数:812,832,569,683,271,989,730,537,925,907,表示“3 例心脏手术全部成功”的有:569,989,故 2 个,故估计“3 例心脏手术全部成功”的概率为210=0.2.故选:A.3、袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为()A0.0324B0.0434 C0.0528D0.0562 答案:B 解析:第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红,据此由互斥事件的和及相互独立事件同时发生的概率公式求解.第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红,第4次恰好取完所有红球的概率为:210(910)2110+810210910110+(810)2210110=0.0434,故选:B 4、从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是()A“至少有一个黑球”与“都是黑球”B“至少有一个黑球”与“都是红球”C“恰好有一个黑球”与“恰好有两个黑球”D“至多有一个黑球”与“至少有两个黑球”答案:A 分析:根据互斥事件的概念判断即可.“至少有一个黑球”中包含“都是黑球”,A 正确;“至少有一个黑球”与“都是红球”不可能同时发生,B 不正确;“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,C 不正确;“至多有一个黑球”与“至少有两个黑球”不可能同时发生,D 不正确 故选:A.5、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有一次准确预报的概率为()A0.8B0.7C0.56D0.38 答案:D 解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:=0.8 (1 0.7)+(1 0.8)0.7=0.38.故选:D 6、掷一枚骰子一次,设事件:“出现偶数点”,事件:“出现 3 点或 6 点”,则事件,的关系是 A互斥但不相互独立 B相互独立但不互斥 C互斥且相互独立 D既不相互独立也不互斥 答案:B 事件=2,4,6,事件=3,6,事件=6,基本事件空间=1,2,3,4,5,6,所以()=36=12,()=26=13,()=16=1213,即()=()(),因此,事件与相互独立当“出现 6 点”时,事件,同时发生,所以,不是互斥事件故选 B 7、下列命题中正确的是()A事件发生的概率()等于事件发生的频率()B一个质地均匀的骰子掷一次得到 3 点的概率是16,说明这个骰子掷 6 次一定会出现一次 3 点 C掷两枚质地均匀的硬币,事件为“一枚正面朝上,一枚反面朝上”,事件为“两枚都是正面朝上”,则()=2()D对于两个事件、,若()=()+(),则事件与事件互斥 答案:C 解析:根据频率与概率的关系判断即可得 A 选项错误;根据概率的意义即可判断 B 选项错误;根据古典概型公式计算即可得 C 选项正确;举例说明即可得 D 选项错误.解:对于 A 选项,频率与实验次数有关,且在概率附近摆动,故 A 选项错误;对于 B 选项,根据概率的意义,一个质地均匀的骰子掷一次得到 3 点的概率是16,表示一次实验发生的可能性是16,故骰子掷 6 次出现 3 点的次数也不确定,故 B 选项错误;对于 C 选项,根据概率的计算公式得()=1212 2=12,()=1212=14,故()=2(),故 C 选项正确;对于 D 选项,设 3,3,A 事件表示从3,3中任取一个数,使得 1,3的事件,则()=13,B 事件表示从3,3中任取一个数,使得 2,1的事件,则()=12,显然()=56=13+12=()+(),此时 A 事件与 B 事件不互斥,故 D 选项错误.小提示:本题考查概率与频率的关系,概率的意义,互斥事件等,解题的关键在于 D 选项的判断,适当的举反例求解即可.8、将一颗质地均匀的骰子先后抛掷两次,观察向上的点数,则点数和为 6 的概率为()A19B536C16D736 答案:B 分析:分别求得基本事件的总数和点数和为6的事件数,由古典概率的计算公式可得所求值 解:一颗质地均匀的正方体骰子先后抛掷 2 次,可得基本事件的总数为6 6=36种,而点数和为6的事件为(1,5),(2,4),(3,3),(4,2),(5,1)共 5 种,则点数和为6的概率为=536 故选:B 9、先后两次抛掷同一个骰子,将得到的点数分别记为a,b,则a,b,4 能够构成等腰三角形的概率是()A16B12C1336D718 答案:D 分析:利用乘法原理求出基本事件总数,然后按照分类讨论的方法求出a,b,4 能够构成等腰三角形的基本事件数,然后利用古典概型的概率公式求解即可.由乘法原理可知,基本事件的总数是 36,结合已知条件可知,当=1时,=4符合要求,有 1 种情况;当=2时,=4符合要求,有 1 种情况;当=3时,=3,4符合要求,有 2 种情况;当=4时,=1,2,3,4,5,6符合要求,有 6 种情况;当=5时,=4,5符合要求,有 2 种情况;当=6时,=4,6符合要求,有 2 种情况,所以能构成等腰三角形的共有 14 种情况,故a,b,4 能够构成等腰三角形的概率=1436=718.故选:D.10、某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A至多一次中靶 B两次都中靶 C只有一次中靶 D两次都没中靶 答案:D 分析:利用对立事件的定义判断可得出结论.对于 A,“至多一次中靶”包含:一次中靶、两次都不中靶,“至少一次中靶”包含:一次中靶、两次都中靶,A 选项不满足条件;对于 B,“两次都中靶”与“至少一次中靶”是包含关系,B 选项不满足条件;对于 C,“只有一次中靶”与“至少一次中靶”是包含关系,C 选项不满足条件;对于 D,“两次都没有中靶”与“至少一次中靶”对立,D 选项满足条件.故选:D.11、造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用.某小学三年级共有学生 400 名,随机抽查 100 名学生并提问中国古代四大发明,能说出两种及其以上发明的有 73 人,据此估计该校三年级的 400 名学生中,对四大发明只能说出一种或一种也说不出的有().A69 人 B84 人 C108 人 D115 人 答案:C 分析:先求得100名学生中,只能说出一种或一种也说不出的人数,由此列出比例式,可求得400名学生中,对四大发明只能说出一种或一种也说不出的人数.在这 100 名学生中,只能说出一种或一种也说不出的有100 73=27人,设该校三年级的 400 名学生中,对四大发明只能说出一种或一种也说不出的有人,则10027=400,解得=108人.故选:C.小提示:本小题主要考查利用样本估计总体,属于基础题.12、2021 年神舟十二号、十三号载人飞船发射任务都取得圆满成功,这意味着我国的科学技术和航天事业取得重大进步现有航天员甲、乙、丙三个人,进入太空空间站后需要派出一人走出太空站外完成某项试验任务,工作时间不超过 10 分钟,如果 10 分钟内完成任务则试验成功结束任务,10 分钟内不能完成任务则撤回再派下一个人,每个人只派出一次已知甲、乙、丙 10 分钟内试验成功的概率分别为45,34,23,每个人能否完成任务相互独立,该项试验任务按照甲、乙、丙顺序派出,则试验任务成功的概率为()A910B1920C2930D5960 答案:D 分析:把试验任务成功的事件拆成三个互斥事件的和,再求出每个事件的概率,然后用互斥事件的概率加法公式计算作答.试验任务成功的事件是甲成功的事件1,甲不成功乙成功的事件2,甲乙都不成功丙成立的事件3的和,事件1,2,3互斥,(1)=45,(2)=(1 45)34=320,(3)=(1 45)(1 34)23=130,所以试验任务成功的概率()=(1+2+3)=45+320+130=5960.故选:D 填空题 13、期末考试结束,高二(1)班班主任张老师从班里的 40 名学生中,随机抽取 10 名学生的语文和数学成绩进行抽样分析,研究学生偏科现象将 10 名学生编号为 1、2、3、10,再将他们的两科成绩(单位:分)绘成如图所示的折线图从两科成绩均超过 70 分的学生中随机抽取 2 人进行访谈,则这 2 人中恰有 1 人是语文成绩高于数学成绩的概率为_ 答案:35#0.6 分析:依据古典概型去求这 2 人中恰有 1 人是语文成绩高于数学成绩的概率.设“抽取的这 2 人中恰有 1 人是语文成绩高于数学成绩”为事件B 因为两科成绩均超过 70 分的学生编号分别是 1、3、4、9、10,其中语文成绩高于数学成绩的学生编号分别是 1、4、10.则从这 5 位学生中随机抽取 2 人构成的样本空间为 =(1,3),(1,4),(1,9),(1,10),(3,4),(3,9),(3,10),(4,9),(4,10),(9,10),10 个样本点 事件B包含(1,3),(1,9),(3,4),(3,10),(4,9),(9,10),共 6 个样本点 所以这 2 人中恰有 1 人是语文成绩高于数学成绩的概率()=610=35 所以答案是:35 14、某学校进行足球选拔赛,有甲、乙、丙、丁四个球队,每两队要进行一场比赛,开始记分规则为:胜一场得 3 分,平一场得 1 分,负一场得 0 分,甲胜乙、丙、丁的概率分别是 0.5、0.6、0.8,甲负乙、丙、丁的概率分别是 0.3、0.2、0.1,最后得分大于等于 7 胜出,则甲胜出的概率为_.答案:0.446 分析:甲要胜出至少得 7 分,3 场比赛要胜 2 场平 1 场或 3 场均胜由独立事件的概率公式可得 两人比赛,一人胜、平、负是互斥事件,因此由题意甲平乙、丙、丁的概率分别是 0.2、0.2、0.1,所以甲胜的概率为=0.5 0.6 0.8+0.5 0.6 0.1+0.5 0.2 0.8+0.2 0.6 0.8=0.446 所以答案是:0.446 小提示:本题考查独立事件同时发生的概率解题关键是确定甲胜这个事件是怎样发生的本题还考查了互斥事件的概率公式 15、一家药物公司试验一种新药,在 500 个病人中试验,其中 307 人有明显疗效,120 人有疗效但疗效一般,剩余的人无疗效,则没有明显疗效的频率是_ 答案:0.386#193500 分析:根据题意得到没有明显疗效的人数,然后利用频率的计算公式即可得到答案 解:由题意可得没有明显疗效的人数为500 307=193,所以没有明显疗效的频率为193500=0.386,所以答案是:0.386 16、某医院某科室有 5 名医护人员,其中有医生 2 名,护士 3 名现要抽调 2 人前往新冠肺炎疫情高风险地区进行支援,则抽调的 2 人中恰好为 1 名医生和 1 名护士的概率是_ 答案:35#0.6 分析:根据条件列举出所有的情况和满足条件的情况,利用古典概型的概率公式进行求解.设 2 名医生为a,b,3 名护士为c,d,e,则抽调 2 人的情况有ab,ac,ad,ae,bc,bd,be,cd,ce,de共 10 种不同结果,其中恰好为 1 名医生和 1 名护士的情况有ac,ad,ae,bc,bd,be共 6 种不同结果,则所求概率为610=35.所以答案是:35.17、,表示 3 种开关并联,若在某段时间内它们正常工作的概率分别 0.9,0.8,0.7,那么此系统的可靠性为_.答案:0.994 解析:根据并联线路的特征,只有三个开关同时发生故障,系统才不正常,可以考虑对立事件求解.某段时间内三个开关全部坏掉的概率为(1 0.9)(1 0.8)(1 0.7)=0.006,所以系统正常工作的概率为1 0.006=0.994,所以此系统的可靠性为 0.994.所以答案是:0.994.小提示:本题主要考查对立事件和独立事件的概率求解,正面考虑情况较多时,一般考虑对立事件来转化,侧重考查数学运算的核心素养.解答题 18、今年四月份某单位组织 120 名员工参加健康知识竞赛,将 120 名员工的竞赛成绩整理后画出的频率直方图如图所示.(1)求实数a的值,并求 80 分是成绩的多少百分位数?(2)试利用频率直方图的组中值估算这次健康知识竞赛的平均成绩;(3)从这次健康知识竞赛成绩落在区间90,100内的员工中,随机选取 2 名员工到某社区开展“学知识健体魄”活动.已知这次健康知识竞赛成绩落在区间90,100内的员工中恰有 3 名男性,求至少有 1 名男性员工被选中的概率.答案:(1)=0.005,80 分是成绩的 75 百分位数;(2)71 分;(3)45.分析:(1)利用频率和为 1,列方程可求出a的值,先求出 80 分以上的频率,然后求出可求出 80 分是成绩的多少百分位数;(2)利用加权平均数的公式直接求解;(3)先求出成绩落在区间90,100内的员工有 6 人,然后利用列举法列出所有的情况,从而可求出概率 解:(1)10 (+3+4+5+6+)=1,解得=0.005;1 10(4 0.005+0.005)=0.75,所以 80 分是成绩的 75 百分位数.(2)45 0.05+55 0.15+65 0.25+75 0.30+85 0.20+95 0.05=71(分);所以这次知识竞赛的平均成绩是 71 分.(3)这次知识竞赛成绩落在区间90,100内的员工有120 0.05=6名.记“至少有一个男性员工被选中”为事件A,记这 6 人为 1,2,3,4,5,6 号,其中男性员工为 1,2,3 号,则样本空间 =(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6).=(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),所以()=1215=45.答:至少有 1 名男性员工被选中的概率为45.19、一次考试中,每位考生要在 8 道试题中随机抽出 2 道题回答,答对其中 1 题为及格(1)某位考生会答 8 道题中的 5 道题,这位考生及格的概率有多大?(2)若某位考生及格的概率小于50%,则他最多只会答几道题?答案:(1)2528;(2)2.分析:(1)分析题意可知该考生答对 1 道或 2 道都为及格,分别求出两种情况的概率之和即可;(2)某位考生及格的概率小于50%,则不及格的概率大于或等于12,设他最多只会答道题,则828212,解不等式即可求解.(1)8道题中5道题会的,3道题不会的,该考生答对1道或2道都为及格,所以这位考生及格的概率为5131+523082=15+1028=2528,(2)某位考生及格的概率小于50%,则不及格的概率大于或等于12,设他最多只会答道题,则828212即(8)(7)2 14,整理可得:2 15+28 0,解得:151132或 15+1132 1511321510.62=2.2,即 2.2,所以他最多只会答2道题.20、垃圾分类(Garbage classification),一般是指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动的总称垃圾分类具有社会、经济、生态等多方面的效益小明和小亮组成“明亮队”参加垃圾分类有奖答题活动,每轮活动由小明和小亮各答一个题,已知小明每轮答对的概率为p,小亮每轮答对的概率为23,且在每轮答题中小明和小亮答对与否互不影响,各轮结果也互不影响已知一轮活动中,“明亮队”至少答对 1 道题概率为1112(1)求p的值;(2)求“明亮队”在两轮活动中答对 3 道题的概率 答案:(1)=34(2)512 分析:(1)设=“一轮活动中,“明亮队”至少答对的 1 道题”,利用对立事件两人都没有答对可求解.(2)设=“两轮活动中小明答对了 1 道题”,=“两轮活动中小亮答对了 1 道题”,=0,1,2,分别求出其概率,设=“明亮队”在两轮活动中答对 3 道题”,则=12+21从而可得答案.(1)设=“一轮活动中小明答对一题”,=“一轮活动中小亮答对一题”,则()=,()=23.设=“一轮活动中,“明亮队”至少答对的 1 道题”,则=,由于每轮答题中小明和小亮答对与否不影响,所以A与B相互独立,从而与相互独立,所以()=()=()()=(1 )13=1 ()=112,所以=34(2)设=“两轮活动中小明答对了 1 道题”,=“两轮活动中小亮答对了 1 道题”,=0,1,2.由题意得,(1)=1434+3414=38,(2)=3434=916(1)=2313+1323=49,(2)=2323=49 设=“明亮队”在两轮活动中答对 3 道题”,则=12+21.由于和相互独立,则12与21互斥,所以()=(12)+(21)=(1)(2)+(2)(1)=3849+91649=512.所以,“明亮队”在两轮活动中答对 3 道题的概率为512.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用版 高中数学 第十 概率 重点 归纳 笔记
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文