2018全国高考新课标2卷理科数学试题[解析版].doc
《2018全国高考新课标2卷理科数学试题[解析版].doc》由会员分享,可在线阅读,更多相关《2018全国高考新课标2卷理科数学试题[解析版].doc(9页珍藏版)》请在咨信网上搜索。
WORD格式整理 2018年普通高等学校招生全国统一考试新课标2卷 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.=( ) A.- - i B.- + i C.- - i D.- + i 解析:选D 2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z },则A中元素的个数为 ( ) A.9 B.8 C.5 D.4 解析:选A 问题为确定圆面内整点个数 3.函数f(x)= 的图像大致为 ( ) 解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= >1,故选B 4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( ) A.4 B.3 C.2 D.0 解析:选B a·(2a-b)=2a2-a·b=2+1=3 5.双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为( ) A.y=±x B.y=±x C.y=±x D.y=±x 解析:选A e= c2=3a2 b=a 6.在ΔABC中,cos=,BC=1,AC=5,则AB= ( ) A.4 B. C. D.2 解析:选A cosC=2cos2 -1= - AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 7.为计算S=1- + - +……+ - ,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4 解析:选B 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A. B. C. D. 解析:选C 不超过30的素数有2,3,5,7,11,13,17,19,23,29共10个,从中选2个其和为30的为7+23,11+19,13+17,共3种情形,所求概率为P== 9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为( ) A. B. C. D. 解析:选C 建立空间坐标系,利用向量夹角公式可得。 10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是( ) A. B. C. D.π 解析:选A f(x)= cos(x+),依据f(x)=cosx与f(x)= cos(x+)的图象关系知a的最大值为。 11.已知f(x)是定义域为(-∞,+ ∞)的奇函数,满足f(1-x)= f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+ …+f(50)= ( ) A.-50 B.0 C.2 D.50 解析:选C 由f(1-x)= f(1+x)得f(x+2)=-f(x),所以f(x)是以4为周期的奇函数,且f(-1)=-f(1)=-2,f(0)=0,f(1)=2,f(2)=f(0)=0,f(3)=f(-1)=-2,f(4)=f(0)=0; f(1)+f(2)+f(3)+…+f(50)=f(1)+f(2)=2 12.已知F1,F2是椭圆C: +=1(a>b>0)的左,右焦点,A是C的左顶点,点P在过A且斜率为的直线上,ΔP F1F2为等腰三角形,∠F1F2P=1200,则C的离心率为( ) A. B. C. D. 解析:选D AP的方程为y=(x+a),∵ΔP F1F2为等腰三角形 ∴|F2P|=| F1F2|=2c, 过P作PH⊥x轴,则∠PF2H=600, ∴|F2H|=c,|PH|=c, ∴P(2c, c),代入AP方程得4c=a 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线y=2ln(x+1)在点(0,0)处的切线方程为__________. 解析:y=2x 14.若x,y满足约束条件 ,则z=x+y的最大值为__________. 解析:9 15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=__________. 解析:- 两式平方相加可得 16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若ΔSAB的面积为5,则该圆锥的侧面积为__________. 解析:设圆锥底面圆半径为r,依题SA=r, 又SA,SB所成角的正弦值为,则×2r2×=5 ∴r2=40, S=π×r×r=40 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分) 记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15. (1)求{an}的通项公式; (2)求Sn,并求Sn的最小值. 解:(1)设{an}的公差为d,由题意得3 a1+3d=-15,由a1=-7得d=2. 所以{an}的通项公式为an=2n-9. (2)由(1)得Sn=n2-8n=(n-4)2-16. 所以当n=4时, Sn取得最小值,最小值为−16. 18.(12分) 下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =-30.4+13.5×19=226.1 (亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5 (亿元). (2)利用模型②得到的预测值更可靠. 理由如下: (ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线=-30.4+13.5t上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠. (ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(12分) 设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8. (1)求l的方程; (2)求过点A,B且与C的准线相切的圆的方程. 解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0). 设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=. 所以|AB|= x1+x2+2=+2=8 ,解得k=-1(舍去),k=1. 因此l的方程为y=x-1. (2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. 设所求圆的圆心坐标为(x0,y0),则解得或 因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 20.(12分) 如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且二面角M-PA-C为300,求PC与平面PAM所成角的正弦值. 解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2. 连结OB.因为AB=BC=AC,所以ΔABC为等腰直角三角形, 且OB⊥AC,OB=AC=2. 由OP2+OB2=PB2知OP⊥OB. 由OP⊥OB,OP⊥AC知OP⊥平面ABC. (2)如图,以O为坐标原点,建立如图空间直角坐标系. 由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0,),P(0,0,2), =(0,0,2) 取平面PAC的法向量=(2,0,0). 设M(a,2-a,0)(0<a≤2),则=(a,4-a,0). 设平面PAM的法向量为n=(x,y,z).则,可取n=((a-4), a,-a), 所以cos<,n>= .由已知得|cos<,n>|=. ∴== 解得a=-4(舍去),a=. 所以n=(- ,,- ).又=(0,2,-2),所以cos<,n>=. 所以PC与平面PAN所成角的正弦值为. 21.(12分) 已知函数f(x)=ex-ax2. (1)若a=1,证明:当x≥0时,f(x)≥1; (2)若f(x)在(0,+∞)只有一个零点,求a. 【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0. 设函数g(x) (x2+1)e-x-1,则g′(x)=-(x-1)2e-x. 当x≠1时,g′(x)<0,所以g(x)在(0,+∞)单调递减. 而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1. (2)设函数h(x)=1-ax 2e-x. f(x)在(0,+∞)只有一个零点当且仅当h(x)在(0,+∞)只有一个零点. (i)当a≤时,h(x)>0,h(x)没有零点; (ii)当a>0时,h′(x)=ax(x-2) e-x. 当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0. 所以h(x)在(0,2)单调递减,在(2,+∞)单调递增. 故h(2)=1- 是h(x)在[0,+∞)的最小值. ①若h(2)>0,即a<,h(x)在(0,+∞)没有零点; ②若h(2)=0,即a=,h(x)在(0,+∞)只有一个零点; ③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)有一个零点, 由(1)知,当x>0时,ex=x2,所以h(4a)=1->1-=1- >0 故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点. 综上,f(x)在(0,+∞)只有一个零点时,a=. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4-4:坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数). (1)求C和l的直角坐标方程; (2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率. 【解析】(1)曲线C的直角坐标方程为+=1. 当cosα≠0时,l的直角坐标方程为y=tanαx+2-tanα, 当cosα=0时,l的直角坐标方程为x=1. (2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0.① 因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0. 又由①得2cosα+sinα=0,,于是直线l的斜率k=tanα=-2. 23.[选修4-5:不等式选讲](10分) 设函数f(x)=5-|x-a|-|x-2|. (1)当a=1时,求不等式f(x)≥0的解集; (2)若f(x)≤1,求a的取值范围. 【解析】(1)当a=1时, 可得f(x)≥0的解集为{x|-2≤x≤3}. (2)f(x)≤1等价于|x+a|+|x-2|≥4. 而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4.得a≤-6或aα2, 所以a的取值范围是(-∞,-6]∪[2,+∞). 专业技术参考资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析版 2018 全国 高考 新课 理科 数学试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文