基于电力大数据的用户侧数据异常检测方法研究.pdf
《基于电力大数据的用户侧数据异常检测方法研究.pdf》由会员分享,可在线阅读,更多相关《基于电力大数据的用户侧数据异常检测方法研究.pdf(3页珍藏版)》请在咨信网上搜索。
1、结果评估Microcomputer Applications Vol.39,No.11,2023文章编号:10 0 7-7 57 X(2023)11-0229-03摘要:针对现有电力大数据的异常检测方法存在的准确度低、检测效率慢等问题,在数据挖掘的基础上,提出了一种将孤立森林算法和局部离群因子算法相结合的电力大数据异常检测方法。从全局和局部两个方面对电力大数据进行异常检测,提高了电力大数据检测的优越性。为了验证该方法检测结果的优越性,通过仿真对该方法进行对比分析。结果表明,与传统的异常检测方法相比,该方法具有更高的检测效率,能够更准确地检测出用户侧电力数据异常值。关键词:电力大数据;异常检测;
2、数据挖掘;孤立森林算法;局部离群因子算法中图分类号:TM391.5Research on Anomaly Detection Method of User Side Data(Shenzhen Power Supply Company,Shenzhen 518000,China)Abstract:Aiming at the problems of low accuracy and slow detection efficiency in the existing anomaly detection methods ofpower big data,on the basis of data mi
3、ning,an anomaly detection method for power big data is proposed,by combining isola-ted forest algorithm and local outlier factor algorithm.Anomaly detection of power consumption data is carried out from bothglobal and local aspects,which improves the superiority of anomaly detection of power consump
4、tion data.In order to verify thesuperiority of the detection results of this method,this method is compared and analyzed by simulation.The results show thatcompared with the traditional anomaly detection method,this method has higher detection efficiency and can detect the abnor-mal value of power d
5、ata on the user side more accurately.Key words:power big data;anomaly detection;data mining;isolated forest algorithm;local outlier factor algorithm0引言随着电网越来越智能化,数据量不断增长,数据类型越来越多样化,对数据处理和价值挖掘提出了越来越高的要求。在电力大数据中,用户侧电力数据占很大比例,反映了用户的实际用电需求,及时发现异常情况可以避免故障的发生。因此,研究电力大数据的异常检测方法对电网的发展和进步具有十分重要的意义2 。查阅相关文献可以
6、看出,现有异常检测方法主要有基于分类的检测方法、基于聚类的检测方法等 3-5。但是,现有方法存在效率低、耗时长、判断不准确等问题 6 。基于此,本文提出一种将孤立森林算法和局部离群因子算法相结合的电力大数据异常检测方法,从全局和局部2 个方面对电力大数据进行异常检测,提高电力大数据检测的优越性。1数据挖掘概述对电力大数据进行挖掘,可以提取出在战略决策、故障检测、降低运营成本、促进电力企业长远发展等方面起着关键作用的数据7。数据挖掘由提出具体问题、数据预处理、数据挖掘、结果评价等组成。结构如图1所示。作者简介:李厚恩(1990 一),男,本科,工程师,研究方向为信息技术。技术交流基于电力大数据的
7、用户侧数据异常检测方法研究李厚恩(深圳供电局有限公司,广东,深圳518 0 0 0)文献标志码:ABased on Power Big DataLI Houen2异常检测方法2.1孤立森林孤立森林(IF)算法是适用于连续数据的无监督异常检测方法8。在孤立森林中,采用递归方法对数据集进行随机划分。检测由训练阶段和测试阶段2 个阶段组成。训练阶段通过训练集构造孤立树,形成孤立森林;测试阶段是将样本点引人孤立树中,得到每个测试样本的异常得分。具体流程如下。步骤1给出一个数据集X=i,2,,)(a EX,i=(a ii,a i2,,c a),随机选择样本点,形成数据集X的子集X。步骤2 从数据集k维中
8、随机选择维度q,在允许范围内随机设置切点p,minai,j=q,tuEX)pmax(aj,j=q,dEX)。229.微型电脑应用2 0 2 3 年第3 9 卷第11期数据数据选库敢写集成图1数据挖掘结构预处理数据数据挖掘Microcomputer Applications Vol.39,No.11,2023步骤3 通过切点划分形成超平面,维度大于p点放人右分支上,维度小于力点放人左分支上。步骤4是否继续分割,如继续分割,转到步骤2,否则执行下一步。步骤5重复步骤1至步骤4,直到生成t棵孤立树。(2)测试阶段对于每个数据点i,遍历所有孤立树(iTree),计算平均高度h(.),对h()进行归一化
9、。最后,根据式(1)计算每个测试样本的异常得分。(1)式中,C(n)为给定样本数n的平均路径长度,E(h()为样本在孤立树中的期望路径长度,S(,n)为样本的特征分数。孤立森林算法虽然不进行距离、密度等指标计算,大大加快了运算速度,但其无法检测局部用电异常,因此本文提出了一种将孤立森林算法和局部离群因子算法相结合的电力大数据异常检测方法。2.2局部离群因子局部离群因子(LOF)算法是有代表性的基于密度的离群点检测方法 10 1,其主要思想是为每个数据点分配离群因子LOF(o),并通过离群因子的大小确定样本数据是否异常。算法步骤如下。步骤1输入数据集D,指定k值和尚未遍历的点0。步骤2 根据式(
10、2)计算点o到点p的第k可达距离。reach_ds(o,p)=max(d(o),d(o,p)(2)式中,reach_ds(o,p)为点o到点p的第k可达距离,d(o,p)为点o和点p之间的距离,d(o)为点o的第k距离。步骤3 根据式(3)计算点o的局部可达密度(o)。p:(o)=reach_de(o,p)/N:(o)PENk(O)式中,p(o)为平均可达距离的倒数(第k邻域内的点到点o)。如果该点o位于簇中,则该点o位于点p的k距离邻域中的概率较大。步骤4根据式(4)计算点o的局部离群因子LOF(o)12)。LOF:(o)=(4)N.(o)将计算出的LOF(o)值按降序排列,前n个放置的数据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 电力 数据 用户 异常 检测 方法 研究
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。