2018年天津市高考数学试题答卷(理科).doc
《2018年天津市高考数学试题答卷(理科).doc》由会员分享,可在线阅读,更多相关《2018年天津市高考数学试题答卷(理科).doc(20页珍藏版)》请在咨信网上搜索。
1、2018年天津市高考数学试卷(理科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1(5.00分)设全集为R,集合A=x|0x2,B=x|x1,则A(RB)=()Ax|0x1Bx|0x1Cx|1x2Dx|0x22(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A6B19C21D453(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A1B2C3D44(5.00分)设xR,则“|x|”是“x31”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件5(5.00分)已知a=log2e,b=l
2、n2,c=log,则a,b,c的大小关系为()AabcBbacCcbaDcab6(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A在区间,上单调递增B在区间,上单调递减C在区间,上单调递增D在区间,2上单调递减7(5.00分)已知双曲线=1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A=1B=1C=1D=18(5.00分)如图,在平面四边形ABCD中,ABBC,ADCD,BAD=120,AB=AD=1若点E为边CD上的动点,则的最小
3、值为()ABCD3二.填空题:本大题共6小题,每小题5分,共30分.9(5.00分)i是虚数单位,复数=10(5.00分)在(x)5的展开式中,x2的系数为11(5.00分)已知正方体ABCDA1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为12(5.00分)已知圆x2+y22x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则ABC的面积为13(5.00分)已知a,bR,且a3b+6=0,则2a+的最小值为14(5.00分)已知a0,函数f(x)=若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取
4、值范围是三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15(13.00分)在ABC中,内角A,B,C所对的边分别为a,b,c已知bsinA=acos(B)()求角B的大小;()设a=2,c=3,求b和sin(2AB)的值16(13.00分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查()应从甲、乙、丙三个部门的员工中分别抽取多少人?()若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望
5、;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率17(13.00分)如图,ADBC且AD=2BC,ADCD,EGAD且EG=AD,CDFG且CD=2FG,DG平面ABCD,DA=DC=DG=2()若M为CF的中点,N为EG的中点,求证:MN平面CDE;()求二面角EBCF的正弦值;()若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长18(13.00分)设an是等比数列,公比大于0,其前n项和为Sn(nN*),bn是等差数列已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6()求an和bn的通项公式;()设
6、数列Sn的前n项和为Tn(nN*),(i)求Tn;(ii)证明=2(nN*)19(14.00分)设椭圆+=1(ab0)的左焦点为F,上顶点为B已知椭圆的离心率为,点A的坐标为(b,0),且|FB|AB|=6()求椭圆的方程;()设直线l:y=kx(k0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q若=sinAOQ(O为原点),求k的值20(14.00分)已知函数f(x)=ax,g(x)=logax,其中a1()求函数h(x)=f(x)xlna的单调区间;()若曲线y=f(x)在点(x1,f(x1)处的切线与曲线y=g(x)在点(x2,g(x2)处的切线平行,证明x1+g(x2)=;()证
7、明当ae时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线2018年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1(5.00分)设全集为R,集合A=x|0x2,B=x|x1,则A(RB)=()Ax|0x1Bx|0x1Cx|1x2Dx|0x2【分析】根据补集、交集的定义即可求出【解答】解:A=x|0x2,B=x|x1,RB=x|x1,A(RB)=x|0x1故选:B【点评】本题考查了集合的化简与运算问题,是基础题目2(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A6B19C21D4
8、5【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3)当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值将其代入得z的值为21,故选:C【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解也可以利用目标函数的几何意义求解最优解,求解最值3(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A1B2C3D4【分析】根据程序框图进行模拟计算即可【
9、解答】解:若输入N=20,则i=2,T=0,=10是整数,满足条件T=0+1=1,i=2+1=3,i5不成立,循环,=不是整数,不满足条件,i=3+1=4,i5不成立,循环,=5是整数,满足条件,T=1+1=2,i=4+1=5,i5成立,输出T=2,故选:B【点评】本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键4(5.00分)设xR,则“|x|”是“x31”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出【解答】解:由|x|可得x,解得0x1,由x31,解得x1,故“|x|”是“x31”
10、的充分不必要条件,故选:A【点评】本题考查了不等式的解法和充分必要条件,属于基础题5(5.00分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()AabcBbacCcbaDcab【分析】根据对数函数的单调性即可比较【解答】解:a=log2e1,0b=ln21,c=log=log23log2e=a,则a,b,c的大小关系cab,故选:D【点评】本题考查了对数函数的图象和性质,属于基础题,6(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A在区间,上单调递增B在区间,上单调递减C在区间,上单调递增D在区间,2上单调递减【分析】将函数y
11、=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为+k,+k,kZ,减区间为+k,+k,kZ,由此能求出结果【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:+2k2x,kZ,减区间满足:2x,kZ,增区间为+k,+k,kZ,减区间为+k,+k,kZ,将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间,上单调递增故选:A【点评】本题考查三角函数的单调区间的确定,考查三角函数的图象与性质、平移等基础知识,考查运算求解能力,考查函数与方程思想,是中档题7(5.00分)已知双曲线=1(a
12、0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A=1B=1C=1D=1【分析】画出图形,利用已知条件,列出方程组转化求解即可【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bxay=0,F(c,0),ACCD,BDCD,FECD,ACDB是梯形,F是AB的中点,EF=3,EF=b,所以b=3,双曲线=1(a0,b0)的离心率为2,可得,可得:,解得a=则双曲线的方程为:=1故选:C【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力8(5.00
13、分)如图,在平面四边形ABCD中,ABBC,ADCD,BAD=120,AB=AD=1若点E为边CD上的动点,则的最小值为()ABCD3【分析】如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,求出A,B,C的坐标,根据向量的数量积和二次函数的性质即可求出【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BNx轴,过点B做BMy轴,ABBC,ADCD,BAD=120,AB=AD=1,AN=ABcos60=,BN=ABsin60=,DN=1+=,BM=,CM=MBtan30=,DC=DM+MC=,A(1,0),B(,),C(0,),设E(
14、0,m),=(1,m),=(,m),0m,=+m2m=(m)2+=(m)2+,当m=时,取得最小值为故选:A【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题二.填空题:本大题共6小题,每小题5分,共30分.9(5.00分)i是虚数单位,复数=4i【分析】根据复数的运算法则计算即可【解答】解:=4i,故答案为:4i【点评】本题考查了复数的运算法则,属于基础题10(5.00分)在(x)5的展开式中,x2的系数为【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求【解答】解:(x)5的二项展开式的通项为=由,得r=2x2的系数为故答案为:【点评】本题考查二
15、项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题11(5.00分)已知正方体ABCDA1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为【分析】求出四棱锥中的底面的面积,求出棱锥的高,然后利用体积公式求解即可【解答】解:正方体的棱长为1,MEFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥MEFGH的体积:=故答案为:【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力12(5.00分)已知圆x2+y22x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点
16、,则ABC的面积为【分析】把圆的方程化为标准方程,写出圆心与半径;直线的参数方程化为普通方程,求出圆心到直线的距离,计算弦长|AB|,利用三角形面积公式求出ABC的面积【解答】解:圆x2+y22x=0化为标准方程是(x1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y2=0,则圆心C到该直线的距离为d=,弦长|AB|=2=2=2=,ABC的面积为S=|AB|d=故答案为:【点评】本题考查了直线与圆的位置关系应用问题,也考查了参数方程应用问题,是基础题13(5.00分)已知a,bR,且a3b+6=0,则2a+的最小值为【分析】化简所求表达式,利用基本不等式转化求解即可【解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 天津市 高考 数学试题 答卷 理科
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。