2022高考数学一轮复习-第8章-立体几何-第1讲-空间几何体的结构、三视图、表面积和体积试题2.docx
《2022高考数学一轮复习-第8章-立体几何-第1讲-空间几何体的结构、三视图、表面积和体积试题2.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习-第8章-立体几何-第1讲-空间几何体的结构、三视图、表面积和体积试题2.docx(15页珍藏版)》请在咨信网上搜索。
1、2022高考数学一轮复习 第8章 立体几何 第1讲 空间几何体的结构、三视图、表面积和体积试题22022高考数学一轮复习 第8章 立体几何 第1讲 空间几何体的结构、三视图、表面积和体积试题2年级:姓名:第八章立体几何第一讲空间几何体的结构、三视图、表面积和体积1.2020全国卷,8,5分理如图8-1-1为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+232.2020浙江,5,4分某几何体的三视图(单位:cm)如图8-1-2所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.63.2021合肥市调研检测表面积为324的球,其内接正四棱
2、柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于()A.567B.576C.240D.494.2021安徽省四校联考在三棱锥A-BCD中,ABC和BCD都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是()A.22-6B.2-3C.2D.665.数学文化题九章算术与几何原本并称现代数学的两大源泉.在九章算术卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图8-1-3所示的羡除中,平面ABDA是铅垂面,下宽AA=3 m,上宽BD=4 m,深3 m,平面BCED是水平面,末端宽CE=5 m,无深,长6 m(直线
3、CE到BD的距离),则该羡除的体积为()图8-1-3A.24 m3 B.30 m3 C.36 m3 D.42 m3 6.2020全国卷,10,5分理已知ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16,则O到平面ABC的距离为()A.3B.32C.1D.327.2021安徽省示范高中联考蹴鞠(如图8-1-4所示),又名“蹋鞠”“蹴球”“蹴圆”“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家级
4、非物质文化遗产名录.已知某“鞠”表面上的四个点A,B,C,D满足AB=CD=14 cm,BD=AC=8 cm,AD=BC=12 cm,则该“鞠”的表面积为 ()图8-1-4A.202 cm2B.1012023 cm2C.101202 cm2D.2023 cm28.2021蓉城名校联考已知三棱锥P-ABC中,PA平面ABC,且PA=3,在ABC中,AC=1,BC=2,且满足sIn 2A=sIn 2B,则三棱锥P-ABC外接球的体积为()A.223B.323C.823D.839.2021湖南六校联考如图8-1-5,以棱长为1的正方体的顶点A为球心,以2为半径作一个球面,则该正方体的表面被球面所截得
5、的所有弧的长之和为 ()图8-1-5A.34B.2C.32D.9410.2020成都市高三模拟若矩形ABCD的对角线交点为O,周长为410,四个顶点都在球O的表面上,且OO=3,则球O的表面积的最小值为()A.3223B.6423C.32D.4811.2021南昌市模拟已知一个圆锥的轴截面是斜边长为2的等腰直角三角形,则该圆锥的侧面面积为.12.2021南昌市高三测试如图8-1-6所示,圆台内接于球,已知圆台上、下底面圆的半径分别为3和4,圆台的高为7,则该球的表面积为.图8-1-613.2021河南省名校第一次联考已知P,A,B,C是半径为3的球面上的四点,其中PA过球心,AB=BC=2,A
6、C=23,则三棱锥P-ABC的体积是.14.2021合肥市调研检测如图8-1-7,在ABC中,CA=CB=3,AB=3,D为AB的中点,点F是BC边上异于点B,C的一个动点,EFAB,垂足为E.现沿EF将BEF折起到PEF的位置,使PEAC,则四棱锥P-ACFE的体积的最大值为.图8-1-715.2021河北六校第一次联考唐朝的狩猎景象浮雕银杯如图8-1-8(1)所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图8-1-8(2)所示.已知球的半径为R,酒杯内壁表面积为143R2,设酒杯上部分(圆
7、柱)的体积为V1,下部分(半球)的体积为V2,则V1V2=()A.2B.32C.1D.3416.2020陕西省百校联考四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA底面ABCD,异面直线AC与PD所成的角的余弦值为105,则四棱锥的外接球的表面积为()A.48B.12C.36D.917.2020洛阳市联考已知三棱锥P-ABC的四个顶点均在同一个球面上,底面ABC满足BA=BC=6,ABC=2,若该三棱锥体积的最大值为3,则其外接球的体积为()A.8B.16C.163D.32318.2020合肥市模拟若圆锥SO1,SO2的顶点和底面圆周都在半径为4的同一个球的球面上,两个圆锥的母线长
8、分别为4,42,则这两个圆锥重合部分的体积为()A.83B.8C.563D.56+163319.2021湖南四校联考已知三棱锥P-ABC的顶点P在底面的射影O为ABC的垂心,若SABCSOBC=SPBC2,且三棱锥P-ABC的外接球半径为3,则SPAB+SPBC+SPAC的最大值为.20.2021黑龙江省六校阶段联考正四棱柱ABCD-A1B1C1D1的外接球O的半径为2,当该正四棱柱的侧面积最大时,一个质点从A出发移动到C1,则沿正四棱柱表面移动的最短距离与直接穿过球O内部移动的最短距离的比值是.21.2021安徽省示范高中联考在长方体ABCD-A1B1C1D1中,底面ABCD是边长为4的正方
9、形,侧棱AA1=t(t4),点E是BC的中点,点P是侧面ABB1A1内的动点(包括四条边上的点),且满足tanAPD=4tanEPB,则四棱锥P-ABED体积的最大值是.22.2020惠州市二调双空题已知底面边长为a的正三棱柱ABC-A1B1C1的六个顶点均在球O1上,又知球O2与此正三棱柱的5个面都相切,则球O1与球O2的半径之比为,表面积之比为.23.条件创新将一个半圆沿它的一条半径剪成一个小扇形和一个大扇形,其中小扇形的圆心角为3,则小扇形围成的圆锥的高与大扇形围成的圆锥的高之比为()A.21B.708 C.41 D.327024.条件创新已知在三棱锥P-ABC中,ABC的内切圆圆O的半
10、径为2,PO平面ABC,且三棱锥P-ABC的三个侧面与底面所成角都为60,则该三棱锥的内切球的体积为()A.32327B.8327C.163D.4325.2021云南省部分学校统一检测探索创新已知一圆锥底面圆的直径为3,圆锥的高为332,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在圆锥内可以任意转动,则a的最大值为.26.生活实践在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子.某雕刻师计划在底面边长为2 m,高为4 m的正四棱柱形的石料ABCD-A1B1C1D1中雕出一个四棱锥O-ABCD和球M的组合体(如图8-1-9所示),其中O为正
11、四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重kg.(其中3.14,石料的密度=2.4 g/cm3,质量m=V,V为体积)答 案第一讲空间几何体的结构、三视图、表面积和体积1.C由三视图知该几何体为如图D 8-1-13所示的三棱锥P-ABC,其中PA平面ABC,ABAC,AB=AC=AP=2,所以PB=PC=BC=22,故其表面积S=(1222)3+12(22)2sin 60=6+23.图D 8-1-132.A由三视图可知,该几何体是三棱柱和三棱锥的组合体,结合图中数据可得该几何体的体积V=12212+1312211=73(cm3),故选A.3.B设球的半径为R,由题意知4R2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 立体几何 空间 几何体 结构 视图 表面积 体积 试题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
链接地址:https://www.zixin.com.cn/doc/2192223.html