2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 黑龙江省 哈尔滨市 香坊区 中考 数学模拟 试卷
- 资源描述:
-
2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷 2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷的全部内容。 第36页(共36页) 2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷 一、选择题(每小题3分,共计30分) 1.(3.00分)(2018•香坊区)﹣2的倒数是( ) A.2 B.﹣2 C. D.﹣ 2.(3。00分)(2018•香坊区)下列计算正确的是( ) A.2x﹣x=1 B.x2•x3=x6 C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6 3.(3.00分)(2018•香坊区)下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 4.(3.00分)(2018•香坊区)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( ) A. B. C. D. 5.(3.00分)(2018•香坊区)对于反比例函数y=,下列说法不正确的是( ) A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限 C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小 6.(3。00分)(2018•香坊区)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A.180元 B.200元 C.225元 D.259.2元 7.(3.00分)(2018•香坊区)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( ) A.45° B.60° C.70° D.90° 8.(3。00分)(2018•香坊区)如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( ) A.160米 B.(60+160) C.160米 D.360米 9.(3.00分)(2018•香坊区)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE∥BC,EF∥AB,则下列比例式一定成立的是( ) A.= B.= C.= D.= 10.(3.00分)(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( ) A. B. C. D. 二、填空题(每小题3分,共计30分) 11.(3.00分)(2018•香坊区)将数字37000000用科学记数法表示为 . 12.(3。00分)(2018•香坊区)函数y=中自变量x的取值范围是 . 13.(3。00分)(2018•香坊区)化简:+3= . 14.(3。00分)(2018•香坊区)把多项式9x3﹣x分解因式的结果是 . 15.(3.00分)(2018•香坊区)不等式组的解集为 . 16.(3。00分)(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为 . 17.(3.00分)(2018•香坊区)已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=,则BE的长为 . 18.(3。00分)(2018•香坊区)一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是 . 19.(3.00分)(2018•香坊区)如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为 . 20.(3.00分)(2018•香坊区)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为 . 三、解答题(其中21—22题各7分,23—24题各8分,25题10分) 21.(7。00分)(2018•香坊区)先化简,再求值: ÷(a﹣),其中a=3tan30°+1,b=cos45°. 22.(7.00分)(2018•香坊区)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上. (1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上; (2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上; (3)连接ME,并直接写出EM的长. 23.(8.00分)(2018•香坊区)中央电视台的“中国诗词大赛"节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好"四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题: (1)本班有多少同学优秀? (2)通过计算补全条形统计图. (3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好? 24.(8.00分)(2018•香坊区)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F. (1)求证:OE=OF; (2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形. 25.(10.00分)(2018•香坊区)某校为美化校园,计划对面积为l800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天. (1)求甲,乙两工程队每天能完成绿化的面积分别是多少m2? (2)若学校每天需付给甲队的绿化费用为0。4万元,乙队为0。25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天? 四、附加题 26.(10。00分)(2018•香坊区)已知△ABC内接于⊙O,AD平分∠BAC. (1)如图1,求证:=; (2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF; (3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长. 27.(10.00分)(2018•香坊区)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0). (1)求此抛物线的解析式; (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围); (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标. 2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷 参考答案与试题解析 一、选择题(每小题3分,共计30分) 1.(3.00分)(2018•香坊区)﹣2的倒数是( ) A.2 B.﹣2 C. D.﹣ 【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数. 【解答】解:∵﹣2×()=1, ∴﹣2的倒数是﹣. 故选:D. 【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题. 2.(3。00分)(2018•香坊区)下列计算正确的是( ) A.2x﹣x=1 B.x2•x3=x6 C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6 【分析】根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解. 【解答】解:A、2x﹣x=x,错误; B、x2•x3=x5,错误; C、(m﹣n)2=m2﹣2mn+n2,错误; D、(﹣xy3)2=x2y6,正确; 故选:D. 【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果. 3.(3。00分)(2018•香坊区)下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确; B、不是轴对称图形,也不是中心对称图形,故此选项错误; C、是轴对称图形,不是中心对称图形,故此选项错误; D、不是轴对称图形.是中心对称图形,故此选项错误. 故选:A. 【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合. 4.(3。00分)(2018•香坊区)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( ) A. B. C. D. 【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形, 故选:D. 【点评】本题考查简单组合体的三视图,从左边看得到的图形是左视图. 5.(3。00分)(2018•香坊区)对于反比例函数y=,下列说法不正确的是( ) A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限 C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小 【分析】根据反比例函数的性质用排除法解答. 【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确; B、∵k=2>0,∴图象在第一、三象限,故B选项正确; C、当x>0时,y随x的增大而减小,故C选项错误; D、当x<0时,y随x的增大而减小,故D选项正确. 故选:C. 【点评】本题考查了反比例函数y=(k≠0)的性质: ①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限. ②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大. 6.(3。00分)(2018•香坊区)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A.180元 B.200元 C.225元 D.259.2元 【分析】设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利20%,列方程求解. 【解答】解:设这种商品每件的进价为x元, 由题意得,270×0。8﹣x=20%x, 解得:x=180, 即每件商品的进价为180元. 故选:A. 【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解. 7.(3。00分)(2018•香坊区)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( ) A.45° B.60° C.70° D.90° 【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′﹣∠C′AB′进行计算. 【解答】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′, ∴∠BAB′=∠CAC′=120°,AB=AB′, ∴∠AB′B=(180°﹣120°)=30°, ∵AC′∥BB′, ∴∠C′AB′=∠AB′B=30°, ∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°. 故选:D. 【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角. 8.(3。00分)(2018•香坊区)如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( ) A.160米 B.(60+160) C.160米 D.360米 【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案. 【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m, 在Rt△ABD中,BD=AD•tan30°=120×=40(m), 在Rt△ACD中,CD=AD•tan60°=120×=120(m), ∴BC=BD+CD=160(m). 故选:C. 【点评】本题考查了仰角俯角问题.注意准确构造直角三角形是解此题的关键. 9.(3。00分)(2018•香坊区)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE∥BC,EF∥AB,则下列比例式一定成立的是( ) A.= B.= C.= D.= 【分析】用平行线分线段成比例定理和相似三角形的判定即可得出结论. 【解答】解:∵DE∥BC, ∴, ∵DE∥BC, ∴△ADE∽△ABC, ∴, ∵EF∥AB, ∴, ∵EF∥AB, ∴△CEF∽△CAB, ∴, ∵DE∥BC,EF∥AB, ∴四边形BDEF是平行四边形, ∴DE=BF,EF=BD, ∴,,,, ∴正确, 故选:C. 【点评】此题主要考查了平行线分线段成比例定理和相似三角形的判定和性质,掌握相似三角形的性质是解本题的关键. 10.(3.00分)(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( ) A. B. C. D. 【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象. 【解答】解:如图,过点B作BE⊥AD于点E, ∵∠A=60°,设边AB的长为x, ∴BE=AB•sin60°=x. ∵平行四边形ABCD的周长为12, ∴AD=(12﹣2x)=6﹣x, ∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6). 则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意. 故选:C. 【点评】考查了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD、BE的长度是解题的关键. 二、填空题(每小题3分,共计30分) 11.(3.00分)(2018•香坊区)将数字37000000用科学记数法表示为 3。7×107 . 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:37000000=3。7×107. 故答案为:3.7×107; 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 12.(3。00分)(2018•香坊区)函数y=中自变量x的取值范围是 x≠﹣3 . 【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x+3≠0,解得x的范围. 【解答】解:根据分式有意义的条件得:x+3≠0, 解得:x≠﹣3. 故答案为:x≠﹣3. 【点评】本题考查了函数自变量取值范围的求法.函数是分式,要使得函数式子有意义,必须满足分母不等于0. 13.(3。00分)(2018•香坊区)化简:+3= 3 . 【分析】先进行二次根式的化简,然后合并. 【解答】解:原式=2+ =3. 【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简与合并. 14.(3.00分)(2018•香坊区)把多项式9x3﹣x分解因式的结果是 x(3x+1)(3x﹣1) . 【分析】原式提取x,再利用平方差公式分解即可. 【解答】解:原式=x(9x2﹣1)=x(3x+1)(3x﹣1), 故答案为:x(3x+1)(3x﹣1) 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 15.(3。00分)(2018•香坊区)不等式组的解集为 ﹣2≤x< . 【分析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可. 【解答】解:, 由①得:x≥﹣2, 由②得:x<, 所以不等式组的解集为:﹣2≤x<. 故答案为﹣2≤x<. 【点评】主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分. 16.(3.00分)(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为 3 . 【分析】先根据圆周角定理求出∠AOB=80°,已知了∠AOB的度数和阴影部分的面积,可根据扇形面积公式直接求出扇形的半径长. 【解答】解:∵在⊙O上,∠ACB=40°, ∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3. 故答案为:3. 【点评】本题主要考查了圆周角定理,扇形的计算公式.扇形面积公式有两种:(1)利用圆心角和半径:S=;(2)利用弧长和半径:S=lr.针对具体的题型选择合适的方法. 17.(3。00分)(2018•香坊区)已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=,则BE的长为 3或5 . 【分析】根据菱形的性质和分两种情况进行解答即可. 【解答】解:当点E在对角线交点左侧时,如图1所示: ∵菱形ABCD中,边长为5,对角线AC长为6, ∴AC⊥BD,BO=, ∵tan∠EAC==, 解得:OE=1, ∴BE=BO﹣OE=4﹣1=3, 当点E在对角线交点左侧时,如图2所示: ∵菱形ABCD中,边长为5,对角线AC长为6, ∴AC⊥BD,BO=, ∵tan∠EAC==, 解得:OE=1, ∴BE=BO﹣OE=4+1=5, 故答案为:3或5; 【点评】此题考查菱形的性质,关键是根据菱形的性质和三角函数解答. 18.(3.00分)(2018•香坊区)一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是 . 【分析】蓝色球用数字1表示,两个红色球分别用2和3表示,列表得出所有等可能结果,从中找到两次摸出的球都是红球的结果数,利用概率公式计算可得. 【解答】解:蓝色球用数字1表示,两个红色球分别用2和3表示,列表得: 1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3 (1,3) (2,3) (3,3) 由上表可知,从袋子总随机摸出两个小球可能会出现9个等可能的结果,其中两球都是红色的结果有4个, 所以两次摸出的球都是红球的概率是, 故答案为:. 【点评】本题考查了用列表法求概率,解题的关键是列表将所有等可能的结果全部列举出来并分清是否为放回试验. 19.(3.00分)(2018•香坊区)如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为 . 【分析】根据题意,利用三角形全等和切线的性质、中位线,直角三角形中30°角所对的直角边与斜边的关系、垂径定理可以求得OE的长. 【解答】解:连接OA、AD,如右图所示, ∵BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E, ∴∠DAB=90°,∠OAC=90°, ∵AB=AC, ∴∠B=∠C, 在△ACO和△BAD中, , ∴△ACO≌△BAD(ASA), ∴AO=AD, ∵AO=OD, ∴AO=OD=AD, ∴△AOD是等边三角形, ∴∠ADO=∠DAO=60°, ∴∠B=∠C=30°,∠OAE=30°,∠DAC=30°, ∴AD=DC, ∵CD=2, ∴AD=2, ∴点O为AD的中点,OE∥AD,OE⊥AB, ∴OE=, 故答案为:. 【点评】本题考查切线的性质、垂径定理、勾股定理、中位线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 20.(3.00分)(2018•香坊区)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为 5 . 【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论. 【解答】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G, 设CM=a, ∵AB=AC, ∴BC=2CM=2a, ∵tan∠ACB=2, ∴=2, ∴AM=2a, 由勾股定理得:AC=a, S△BDC=BC•DH=10, =10, DH=, ∵∠DHM=∠HMG=∠MGD=90°, ∴四边形DHMG为矩形, ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG, ∵∠ADC=90°=∠ADG+∠CDG, ∴∠ADG=∠CDH, 在△ADG和△CDH中, ∵, ∴△ADG≌△CDH(AAS), ∴DG=DH=MG=,AG=CH=a+, ∴AM=AG+MG, 即2a=a++, a2=20, 在Rt△ADC中,AD2+CD2=AC2, ∵AD=CD, ∴2AD2=5a2=100, ∴AD=5或﹣5(舍), 故答案为:5.. 【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题. 三、解答题(其中21—22题各7分,23-24题各8分,25题10分) 21.(7.00分)(2018•香坊区)先化简,再求值: ÷(a﹣),其中a=3tan30°+1,b=cos45°. 【分析】直接将原式通分进而分解因式后再化简,把已知代入得出答案. 【解答】解:原式=•=, 当a=3tan30°+1=3×+1=+1, b=cos45°=×=1, 原式==. 【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键. 22.(7.00分)(2018•香坊区)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上. (1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上; (2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上; (3)连接ME,并直接写出EM的长. 【分析】(1)利用等腰直角三角形的性质画出即可; (2)利用矩形的性质画出即可; (3)根据勾股定理解答即可. 【解答】解:(1)如图所示; (2)如图所示; (3)如图所示,EM= 【点评】此题主要考查了应用设计与作图,正确掌握等腰直角三角形、矩形的判定方法是解题关键. 23.(8。00分)(2018•香坊区)中央电视台的“中国诗词大赛"节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题: (1)本班有多少同学优秀? (2)通过计算补全条形统计图. (3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好? 【分析】(1)根据统计图中的数据可以求得本班的学生数,从而可以求得本班优秀的学生数; (2)根据题意可以求得成绩一般的学生和(1)中成绩优秀的学生,从而可以将条形统计图补充完整; (3)根据统计图中的数据可以求得该校3000人有多少人成绩良好. 【解答】解:(1)本班有学生:20÷50%=40(名), 本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名), 答:本班有4名同学优秀; (2)成绩一般的学生有:40×30%=12(名), 成绩优秀的有4名同学, 补全的条形统计图,如右图所示; (3)3000×50%=1500(名), 答:该校3000人有1500人成绩良好. 【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 24.(8.00分)(2018•香坊区)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F. (1)求证:OE=OF; (2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形. 【分析】(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF; (2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论. 【解答】(1)证明:∵四边形ABCD是平行四边形, ∴OA=OC,AB∥CD,OB=OD, ∴∠OAE=∠OCF, 在△OAE和△OCF中, , ∴△AOE≌△COF(ASA), ∴OE=OF; (2)解:∵OE=OF,OB=OD, ∴四边形DEBF是平行四边形, ∵DE⊥AB, ∴∠DEB=90°, ∴四边形DEBF是矩形, ∴BD=EF, ∴OD=OB=OE=OF=BD, ∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE. 【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、矩形的性质、等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用. 25.(10。00分)(2018•香坊区)某校为美化校园,计划对面积为l800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天. (1)求甲,乙两工程队每天能完成绿化的面积分别是多少m2? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天? 【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可; (2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可. 【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2), 根据题意得:﹣=4, 解得:x=50, 经检验x=50是原方程的解, 则甲工程队每天能完成绿化的面积是50×2=100(m2). 答:甲、乙两工程队每天能完成绿化的面积分别是100 m2,50 m2. (2)设应安排甲队工程y天,根据题意得:0。4y+×0.25≤8, 解得:y≥10, 答:至少应安排甲队工作10天. 【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验. 四、附加题 26.(10.00分)(2018•香坊区)已知△ABC内接于⊙O,AD平分∠BAC. (1)如图1,求证:=; (2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF; (3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长. 【分析】(1)由∠BAD=∠CAD知∠BOD=∠COD,根据圆心角定理可得; (2)作OM⊥AD知AM=DM,证BE∥OM∥CF得=,由OB=OC知FM=EM,由AM﹣FM=DM﹣EM即可得证; (3)延长EO交AB于点H,连接CG、OA,由∠BAC=90°且AD平分∠BAC知AF=CF=,证四边形EFCG是矩形且EF=2EG得EF=2,据此知BE=AE=3、AB=6,根据AE=BE、OA=OB知EH垂直平分AB,据此证△HBO∽△ABC得==,求得OH=1,根据OE=EH﹣OH可得答案. 【解答】解:(1)如图1,连接OB、OC、OD, ∵∠BAD和∠BOD是所对的圆周角和圆心角, ∠CAD和∠COD是所对的圆周角和圆心角, ∴∠BOD=2∠BAD,∠COD=2∠CAD, ∵AD平分∠BAC, ∴∠BAD=∠CAD, ∴∠BOD=∠COD, ∴=; (2)如图2,过点O作OM⊥AD于点M, ∴∠OMA=90°,AM=DM, ∵BE⊥AD于点E,CF⊥AD于点F, ∴∠CFM=90°,∠MEB=90°, ∴∠OMA=∠MEB,∠CFM=∠OMA, ∴OM∥BE,OM∥CF, ∴BE∥OM∥CF, ∴=, ∵OB=OC, ∴==1, ∴FM=EM, ∴AM﹣FM=DM﹣EM, ∴DE=AF; (3)延长EO交AB于点H,连接CG,连接OA. ∵BC为⊙O直径, ∴∠BAC=90°,∠G=90°, ∴∠G=∠CFE=∠FEG=90°, ∴四边形CFEG是矩形, ∴EG=CF, ∵AD平分∠BAC, ∴∠BAF=∠CAF=×90°=45°, ∴∠ABE=180°﹣∠BAF﹣∠AEB=45°, ∠ACF=180°﹣∠CAF﹣∠AFC=45°, ∴∠BAF=∠ABE,∠ACF=∠CAF, ∴AE=BE,AF=CF, 在Rt△ACF中,∠AFC=90°, ∴sin∠CAF=,即sin45°=, ∴CF=2×=, ∴EG=, ∴EF=2EG=2, ∴AE=3, 在Rt△AEB中,∠AEB=90°, ∴AB===6, ∵AE=BE,OA=OB, ∴EH垂直平分AB, ∴BH=EH=3, ∵∠OHB=∠BAC,∠ABC=∠ABC ∴△HBO∽△ABC, ∴==, ∴OH=1, ∴OE=EH﹣OH=3﹣1=2. 【点评】本题主要考查圆的综合问题,解题的关键是掌握圆心角定理和圆周角定理、解直角三角形的应用及相似三角形的判定与性质等知识点. 27.(10.00分)(2018•香坊区)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0). (1)求此抛物线的解析式; (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围); (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标. 【分析】(1)由OA=OC且OA=3知C(3,0),将点B、C坐标代入计算可得; (2)待定系数求出直线CD解析式y=﹣2x+6,据此可得E(t,﹣2t+6),P(t,﹣t2+2t+3),根据d=PH﹣EH可得答案; (3)先利用等腰三角形性质知∠BDK=∠CDK,由∠BQE=∠QDE+∠DEQ、∠BQE+∠DEQ=90°得2∠CDK+2∠DEQ=90°,即∠RNE=45°,从而得出QM=ME,再证△DQT≌△ECH得DT=EH、QT=CH,从而用含t的式子表示出QM、ME的长度,根据QM=ME列出方程求解可得. 【解答】解:(1)当x=0时,y=3, ∴A(0,3)即OA=3, ∵OA=OC, ∴OC=3, ∴C(3,0), ∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0) ∴, 解得:, ∴抛物线的解析式为:y=﹣x2+2x+3; (2)如图1,延长PE交x轴于点H, ∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴D(1,4), 设直线CD的解析式为y=kx+b, 将点C(3,0)、D(1,4)代入,得: , 解得:, ∴y=﹣2x+6, ∴E(t,﹣2t+6),P(t,﹣t2+2t+3), ∴PH=﹣t2+2t+3,EH=﹣2t+6, ∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3; (3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N, ∵D(1,4),B(﹣1,0),C(3,0), ∴BK=2,KC=2, ∴DK垂直平分BC, ∴BD=CD, ∴∠BDK=∠CDK, ∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°, ∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°, ∴∠CDK+∠DEQ=45°,即∠RNE=45°, ∵ER⊥DK, ∴∠NER=45°, ∴∠MEQ=∠MQE=45°, ∴QM=ME, ∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH, ∴△DQT≌△ECH, ∴DT=EH,QT=CH, ∴ME=4﹣2(﹣2t+6), QM=MT+QT=MT+CH=t﹣1+(3﹣t), 4﹣2(﹣2t+6)=t﹣1+(3﹣t), 解得:t=, ∴P(,). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等腰三角形的判定与性质、全等三角形的判定与性质等知识点.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2018年黑龙江省哈尔滨市香坊区中考数学模拟试卷.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2189271.html