2019人教版八年级数学下册知识点总结归纳.pdf
《2019人教版八年级数学下册知识点总结归纳.pdf》由会员分享,可在线阅读,更多相关《2019人教版八年级数学下册知识点总结归纳.pdf(16页珍藏版)》请在咨信网上搜索。
1、1第十六章第十六章 二次根式二次根式1二次根式:一般地,式子叫做二次根式.)0a(,a注意:(1)若这个条件不成立,则 不是二次根式;0aa(2)是一个重要的非负数,即;0.aa2.最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式不含开方开的尽的因数或因式;被开方数中不含分母不含分母;分母中不含根式不含根式。3重要公式:(1),(2);注意使用.)0a(a)a(2)0a(a)0a(aaa2)0a()a(a2(3)积的算术平方根:,)0b,0a(baab积的算术平方根等于积中各因式的算术平方根的积;4二次根式的乘法法则:.)0b,0a(abba5二次根式比较大小的方法:(
2、1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6商的算术平方根:,)0b,0a(baba商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7二次根式的除法法则:(1);(2);)0b,0a(baba)0b,0a(baba(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8常用分母有理化因式:,它们aa 与baba与bnambnam与也叫互为有理化因式.29最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,被开方数的因数是整数,因式是整式,被开方数中不含
3、能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于 2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二
4、次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.13 数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。3第十七章第十七章 勾股定理勾股定理 1.勾股定理勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b2=c2。2.勾股定理逆定理勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。,那么这个三角形是直角三角形。3.经过证经过证明被确明被
5、确认认正确的命正确的命题题叫做定理叫做定理。我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)4.直角三角形的性质 (1)、直角三角形的两个锐角互余。可表示如下:C=90A+B=90 (2)、在直角三角形中,在直角三角形中,30角所角所对对的直角的直角边边等于斜等于斜边边的一半。的一半。A=30 可表示如下:C=90 BC=AB21 (3)、直角三角形斜直角三角形斜边边上的中上的中线线等于斜等于斜边边的一半的一半 ACB=90 可表示如下:D 为 AB 的中点 CD=AB=BD=AD21 5、常用关系式(等面积法
6、)由三角形面积公式可得:AB CD=AC BC7、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系,那么这个222cba三角形是直角三角形。8、命题 4(1)、命题的分类(按正确、错误与否分)真命题(正确的命题)命题 假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。(2)原命题、逆命题 题设与结论正好相反(互逆命题)6、证明的一般步骤(1)根据题意,画出图形。(2)
7、根据题设、结论、结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位三角形的中位线线平行于第三平行于第三边边,并且等于它的一半。,并且等于它的一半。三角形中位线定理的作用:位置关系:位置关系:可以证明两条直线平行。数量关系:数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三
8、条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。5第十八章第十八章 平行四边形平行四边形1 四边形的内角和与外角和定理:(1)四边形的内角和等于 360;(2)四边形的外角和等于 360.几何表达式举例:(1)A+B+C+D=360 (2)1+2+3+4=360 2多边形的内角和与外角和定理:(1)n 边形的内角和等于(n-2)180;(2)任意多边形的外角和等于 360.几何表达式举例:略3平行四边形的性质:因为 A
9、BCD 是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(几何表达式举例:(1)ABCD 是平行四边形ABCD ADBC(2)ABCD 是平行四边形AB=CD AD=BC(3)ABCD 是平行四边形ABC=ADC DAB=BCD(4)ABCD 是平行四边形OA=OC OB=OD(5)ABCD 是平行四边形CDA+BAD=1804.平行四边形的判定:.是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD54321几何表达式举例:(1)ABCD ADBC四边形
10、 ABCD 是平行四边形(2)AB=CD AD=BC四边形 ABCD 是平行四边形(3)ABCD1234ABCDABDOCABDOC65.矩形的性质:因为 ABCD 是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所((2)(1)(3)几何表达式举例:(1)(2)ABCD 是矩形A=B=C=D=90(3)ABCD 是矩形AC=BD6.矩形的判定:四边形 ABCD 是矩形.边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321(1)(2)几何表达式举例:(1)ABCD 是平行四边形又A=90四边形 ABCD 是矩形(2)A=B=C=D=90四边形 AB
11、CD 是矩形(3)7菱形的性质:因为 ABCD 是菱形.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(几何表达式举例:(1)(2)ABCD 是菱形AB=BC=CD=DA(3)ABCD 是菱形ACBD ADB=CDB8菱形的判定:四边形四边形 ABCD 是菱形.边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321几何表达式举例:(1)ABCD 是平行四边形DA=DC四边形 ABCD 是菱形(2)AB=BC=CD=DA四边形 ABCD 是菱形(3)ABCD 是平行四边形ACBD四边形 ABCD 是菱形9正方形的性质:因为 ABCD 是正方形.32
12、1分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(CDAB(1)ABCDO(2)(3)几何表达式举例:(1)(2)ABCD 是正方形AB=BC=CD=DAA=B=C=D=90(3)ABCD 是正方形AC=BD ACBD CDBAOCDBAOADBCADBCADBCOADBCO710正方形的判定:四边形 ABCD 是正方形.一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321 几何表达式举例:(1)ABCD 是平行四边形又AD=AB ABC=90四边形 ABCD 是正方形(2)ABCD 是菱形又ABC=90四边形 ABCD 是正方形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 人教版 八年 级数 下册 知识点 总结 归纳 全面 编辑 修改 word
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。