线性方程组理论的有关应用本科论文.doc
《线性方程组理论的有关应用本科论文.doc》由会员分享,可在线阅读,更多相关《线性方程组理论的有关应用本科论文.doc(15页珍藏版)》请在咨信网上搜索。
1、线性方程组理论的有关应用Applications on theory of linear equations 专 业: 数学与应用数学作者: 指导老师: 学校二摘 要本文介绍了线性方程组的一些理论, 在此基础上做了一定的推广, 并讨论了这些重要的理论在高等代数中的具体应用.关键词: 线性方程组; 行列式; 非零解; 矩阵的秩; 解空间AbstractIn this paper, we introduce some theories of linear equations, popularize some significant theories, and discuss these impor
2、tant theories of algebra in specific applications.Keywords: linear equations; determinant; non-zero solution; rank of matrix; solution space II 目 录摘 要IABSTRACTII0 引言11 关于线性方程组的一般理论12 线性方程组理论的几个应用22.1 齐次线性方程组有非零解理论在初等数学中的应用22.2 齐次线性方程组解空间理论在解题上的应用52.3 线性方程组理论在解析几何中的应用7参考文献110 引言目前, 新的中学教材已初步渗透了高等数学的一
3、些知识理论, 而利用这些知识理论来解决初等数学问题显得既简洁又优美. 本文针对中学数学中由几个结构相似且具有共同字母或数字的等式联系在一起的若干变量之间的相互关系问题,结合高等代数中有关齐次线性方程组的理论, 从而有助于问题迅速的得以转化和解决. 同时将线性方程组理论应用于解析几何, 沟通了代数与几何的内在联系, 并可透视代数与几何的相互渗透, 也可使许多几何问题得到更为简明的刻画.关于线性方程组的一般理论, 可参看文献1-3,8-11, 一些专题研究可参看文献4-7. 1 关于线性方程组的一般理论在这一节, 我们回顾高等代数中关于线性方程组的一般理论. 对于任一个矩阵, 我们用表示的转置,
4、表示的秩, 表示自由未知量的个数, 表示的维数. 并且我们知道在经典的高等代数的教材中, 有以下关于线性方程组的结果.定理1.1 含有个未知量个方程的齐次线性方程组有非零解的充要条件是其系数行列式等于零.定理 1.2 设齐次线性方程组 (1.1)系数矩阵的秩. 且方程组(1.1)的解空间为. 则可以得到下列结论, 这里表示方程组(1.1)解空间的维数2 线性方程组理论的几个应用2.1 齐次线性方程组有非零解理论在初等数学中的应用(1) 在求解二元方程组上的应用利用定理1.1可求解二元方程组, 求解时只需将其中一个变量作为常数即可. 例1 求下面方程组的全部解, 其中方程组为解 将看成是常数,
5、则方程组可改写为 ,则有 .求解得, . 代入方程组求解, 得到, . 故原方程组的全部解为, .例2 已知一次函数, 且, , 求的取值范围.解 应先找出与, 的关系, 有, , ,得这是关于的三元齐次线性方程组, 显然方程组有非零解, 于是化简为, 所以 因此 .例3 等差数列的前项和为30, 前2项和为100, 则它的前3项和为 130; 170; 210; 260解 由等差数列知识, 可设前n项和为,所以, , 考察以为未知数的方程组由于该齐次线性方程组有非零解, 因此其系数行列式为0, 于是即 化简, 得, 所以.故选.例4 已知, 求证, , 中至少有一个不小于证明 先找出, ,
6、间的关系, 有此关于, , 的齐次线性方程组有非零解, 于是化简, 假设结论不成立, 即, , ,易推出, 产生矛盾, 命题得证.(2) 在证明一元次方程重根上的应用由高等代数中多项式理论容易知道, 多项式的重因式必是的因式.因此, 的重根必是的的根, 且此根是与的公共根. 由此结论我们可以推广到以下结论如果是的重根, 则是的重根.下面我们就这一理论: 来看一看如何利用线性方程组理论证明方程的重根. 首先给出一个简单的结论:设是方程与的公共根, 则也是的根, 从而有下列齐次线性方程组 其根为, 根不为零, 由线性方程组理论知其系数行列式为零. 即 .由上述结论, 我们可以获得一个判断重根的方法
7、.例5 证明一元二次方程()有重根的充要条件是其判别式. 证明 对方程两边求导有. 一元二次方程有重根, 即其与有公共根, 由上面的结论有 .展开运算即有. 推广到一元次方程. 设是的根, 从而有下列齐次线性方程组其根为不为零, 由线性方程组理论知其系数行列式为零. 即 .2.2 齐次线性方程组解空间理论在解题上的应用例6 设为矩阵, 为矩阵, 且, 则.证明 把矩阵分块为: , 则, . 从而, 其中是的解空间. 由定理1.2得. 于是.例7 若是阶方阵,且, 则.证明 因为 , (2.1)又因即, 由例6知 . (2.2)由(2.1)(2.2)两式得.分析以上三个例题, 很容易想到利用齐次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性方程组 理论 有关 应用 本科 论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。