2022届高考数学统考一轮复习-第7章-立体几何-第5节-空间向量的运算及应用教案-理-新人教版.doc
《2022届高考数学统考一轮复习-第7章-立体几何-第5节-空间向量的运算及应用教案-理-新人教版.doc》由会员分享,可在线阅读,更多相关《2022届高考数学统考一轮复习-第7章-立体几何-第5节-空间向量的运算及应用教案-理-新人教版.doc(15页珍藏版)》请在咨信网上搜索。
2022届高考数学统考一轮复习 第7章 立体几何 第5节 空间向量的运算及应用教案 理 新人教版 2022届高考数学统考一轮复习 第7章 立体几何 第5节 空间向量的运算及应用教案 理 新人教版 年级: 姓名: 空间向量的运算及应用 [考试要求] 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. 2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量及平面的法向量. 5.能用向量语言表述线线、线面、面面的平行和垂直关系. 6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 1.空间向量的有关概念 名称 定义 空间向量 在空间中,具有大小和方向的量 相等向量 方向相同且模相等的向量 相反向量 方向相反且模相等的向量 共线向量(或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量 平行于同一个平面的向量 2.空间向量的有关定理 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3). 向量表示 坐标表示 数量积 a·b a1b1+a2b2+a3b3 共线 a=λb(b≠0,λ∈R) a1=λb1,a2=λb2,a3=λb3 垂直 a·b=0(a≠0,b≠0) a1b1+a2b2+a3b3=0 模 |a| 夹角 〈a,b〉(a≠0,b≠0) cos〈a,b〉= 5.空间位置关系的向量表示 位置关系 向量表示 直线l1,l2的方向向量分别为n1,n2 l1∥l2 n1∥n2⇔n1=λn2 l1⊥l2 n1⊥n2⇔n1·n2=0 直线l的方向向量为n,平面α的法向量为m l∥α n⊥m⇔n·m=0 l⊥α n∥m⇔n=λm 平面α,β的法向量分别为n,m α∥β n∥m⇔n=λm α⊥β n⊥m⇔n·m=0 1.对空间任一点O,若=x+y(x+y=1),则P,A,B三点共线. 2.对空间任一点O,若=x+y+z(x+y+z=1),则P,A,B,C四点共面. 3.平面的法向量的确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为 一、易错易误辨析(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a,b共面. ( ) (2)若A,B,C,D是空间任意四点,则有+++=0. ( ) (3)对于非零向量b,由a·b=b·c,则a=c. ( ) (4)两向量夹角的范围与两异面直线所成角的范围相同. ( ) [答案] (1)√ (2)√ (3)× (4)× 二、教材习题衍生 1.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( ) A.α∥β B.α⊥β C.α,β相交但不垂直 D.以上均不对 C [∵n1≠λn2,且n1·n2=-23≠0,∴α,β相交但不垂直.] 2.在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是( ) A.-a+b+c B.a+b+c C.-a-b+c D.a-b+c A [=+=+(-)=c+(b-a)=-a+b+c.] 3.O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t= . [∵P,A,B,C四点共面,∴++t=1,∴t=.] 4.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为 . [||2=2=(++)2 =2+2+2+2(·+·+·) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,所以||=,所以EF的长为.] 考点一 空间向量的线性运算 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形. (2)将已知向量和所求向量转化到三角形或平行四边形中. (3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 1.如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x+y+z= . [连接ON,设=a,=b,=c, 则=-=(+)-=b+c-a, =+=+ =a+ =a+b+c. 又=x+y+z,所以x=,y=,z=, 因此x+y+z=++=.] 2.如图所示,在平行六面体ABCDA1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点, 试用a,b,c表示以下各向量: (1);(2);(3)+. [解] (1)因为P是C1D1的中点, 所以=++=a++ =a+c+=a+c+b. (2)因为N是BC的中点, 所以=++=-a+b+ =-a+b+=-a+b+c. (3)因为M是AA1的中点, 所以=+=+ =-a+=a+b+c, 又=+=+ =+=c+a, 所以+=+ =a+b+c. 点评:空间向量的线性运算类似于平面向量中的线性运算. 考点二 共线(共面)向量定理的应用 证明三点共线和空间四点共面的方法比较 三点(P,A,B)共线 空间四点(M,P,A,B)共面 =λ且同过点P =x+y 对空间任一点O,=+t 对空间任一点O,=+x+y 对空间任一点O,=x+(1-x) 对空间任一点O,=x+y+(1-x-y) [典例1] 如图,已知E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,DA的中点. (1)求证:E,F,G,H四点共面; (2)求证:BD∥平面EFGH. [证明] (1)连接BG,EG,则=+ =+ =++ =+. 由共面向量定理的推论知E,F,G,H四点共面. (2)因为=-=-=(-)=, 所以EH∥BD. 又EH⊂平面EFGH,BD⊄平面EFGH, 所以BD∥平面EFGH. 点评:证明点共面问题可转化为证明向量共面问题,如要证明P,A,B,C四点共面,只要能证明=x+y,或对空间任一点O,有=+x+y,或=x+y+z(x+y+z=1)即可. 1.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是( ) A.2, B.-, C.-3,2 D.2,2 A [∵a∥b,∴设b=xa,∴ 解得或故选A.] 2.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于 . [∵a与b不共线,故存在实数x,y使得c=xa+yb, ∴解得故填.] 考点三 空间向量数量积的应用 空间向量数量积的应用 [典例2] 如图所示,四棱柱ABCDA1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°. (1)求AC1的长; (2)求证:AC1⊥BD; (3)求BD1与AC夹角的余弦值. [解] (1)记=a,=b,=c, 则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°, ∴a·b=b·c=c·a=. |1|2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)=1+1+1+2×=6, ∴||=,即AC1的长为. (2)证明:∵1=a+b+c,=b-a, ∴1·=(a+b+c)·(b-a) =a·b+|b|2+b·c-|a|2-a·b-a·c =b·c-a·c=|b||c|cos 60°-|a||c|cos 60°=0. ∴1⊥,∴AC1⊥BD. (3)1=b+c-a,=a+b, ∴|1|=,||=, 1·=(b+c-a)·(a+b) =b2-a2+a·c+b·c=1. ∴cos〈1,〉==. ∴AC与BD1夹角的余弦值为. 点评:解决数量积的两条常用途径:一是数量积的定义,常借助基向量运算求解;二是坐标法,常用于可好建系的几何体(如正方体、长方体等). 如图,已知直三棱柱ABCA1B1C1,在底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点. (1)求的模; (2)求cos〈,〉的值; (3)求证:A1B⊥C1M. [解] (1)如图,以点C作为坐标原点O,CA,CB,CC1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系. 由题意得B(0,1,0),N(1,0,1), 所以|| = =. (2)由题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2), 所以=(1,-1,2),=(0,1,2), ·=3,||=,||=, 所以cos〈,〉==. (3)证明:由题意得C1(0,0,2),M, =(-1,1,-2), =, 所以·=-++0=0, 所以⊥, 即A1B⊥C1M. 考点四 利用向量证明平行与垂直 1.利用空间向量证明平行的方法 线线平行 证明两直线的方向向量共线 线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行 面面平行 ①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 2.利用空间向量证明垂直的方法 线线垂直 证明两直线所在的方向向量互相垂直,即证它们的数量积为零 线面垂直 证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示 面面垂直 证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示 [典例3] 如图所示,在四棱锥PABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角,求证: (1)CM∥平面PAD; (2)平面PAB⊥平面PAD. [解] (1)证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz. ∵PC⊥平面ABCD, ∴∠PBC为PB与平面ABCD所成的角, ∴∠PBC=30°. ∵PC=2,∴BC=2,PB=4, ∴D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M, ∴=(0,-1,2),=(2,3,0), =. 设n=(x,y,z)为平面PAD的一个法向量, 由即 令y=2,得n=(-,2,1). ∵n·=-×+2×0+1×=0, ∴n⊥.又CM⊄平面PAD, ∴CM∥平面PAD. (2)法一:由(1)知=(0,4,0),=(2,0,-2), 设平面PAB的一个法向量为m=(x0,y0,z0), 由即 令x0=1,得m=(1,0,). 又∵平面PAD的一个法向量n=(-,2,1), ∴m·n=1×(-)+0×2+×1=0, ∴平面PAB⊥平面PAD. 法二:取AP的中点E,连接BE, 则E(,2,1),=(-,2,1). ∵PB=AB,∴BE⊥PA. 又∵·=(-,2,1)·(2,3,0)=0, ∴⊥.∴BE⊥DA. 又PA∩DA=A, ∴BE⊥平面PAD. 又∵BE⊂平面PAB, ∴平面PAB⊥平面PAD. 点评:利用向量法证明空间位置关系的关键是相应坐标元素的正确求解.如本例中的点M可借助=4可得. 如图所示,在长方体ABCD A1B1C1D1中,AA1=AD=1,E为CD中点. (1)求证:B1E⊥AD1; (2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由. [解] 以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系.设AB=a. (1)证明:A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1), 故=(0,1,1),=. 因为· =-×0+1×1+(-1)×1=0, 因此⊥, 所以B1E⊥AD1. (2)存在满足要求的点P, 假设在棱AA1上存在一点P(0,0,z0), 使得DP∥平面B1AE,此时=(0,-1,z0), 再设平面B1AE的一个法向量为n=(x,y,z). =(a,0,1),=. 因为n⊥平面B1AE,所以n⊥,n⊥, 得 取x=1,则y=-,z=-a, 则平面B1AE的一个法向量n=. 要使DP∥平面B1AE,只要n⊥, 有-az0=0, 解得z0=. 所以存在点P,满足DP∥平面B1AE,此时AP=.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 统考 一轮 复习 立体几何 空间 向量 运算 应用 教案 新人
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022届高考数学统考一轮复习-第7章-立体几何-第5节-空间向量的运算及应用教案-理-新人教版.doc
链接地址:https://www.zixin.com.cn/doc/2183364.html
链接地址:https://www.zixin.com.cn/doc/2183364.html