初中不等式与不等式组超经典复习[1].doc
《初中不等式与不等式组超经典复习[1].doc》由会员分享,可在线阅读,更多相关《初中不等式与不等式组超经典复习[1].doc(24页珍藏版)》请在咨信网上搜索。
第九章 不等式与不等式组 第一节、知识梳理 一、学习目标 1.掌握不等式及其解(解集)的概念,理解不等式的意义. 2.理解不等式的性质并会用不等式基本性质解简单的不等式. 3.会用数轴表示出不等式的解集. 二、知识概要 1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式. 2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解. 3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集. 4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式. 5.不等式的性质: 性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变. 6.三角形中任意两边之差小于第三边. 三、重点难点 重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解. 四、知识链接 本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础. 五、中考视点 不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求范围等. 第二节、教材解读 1. 常用的不等号有哪些? 常用的不等号有五种,其读法和意义是: (1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小. (2)“>”读作“大于”,表示其左边的量比右边的量大. (3)“<”读作“小于”,表示其左边的量比右边的量小. (4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量. (5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量. 2. 如何恰当地列不等式表示不等关系? (1)找准题中不等关系的两个量,并用代数式表示. (2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义. (3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来. 根据下列关系列不等式:a的2倍与b的的和不大于3.前者用代数式表示是2a+b.“不大于”就是“小于或等于”. 列不等式为:2a+b≤3. 3. 用数轴表示不等式注意什么? 用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在范围内则用实心点表示,若边界点不在范围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画. 在同一个数轴上表示下列两个不等式:x>-3;x≤2. 第三节、错题剖析 一 、去括号时,错用乘法分配律 【例1】 解不等式 3x+2(2-4x)<19. 错解: 去括号,得 3x+4-4x<19,解得x>-15. 诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项. 正解: 去括号,得 3x+4-8x<19, -5x<15,所以x>-3. 二、去括号时,忽视括号前的负号 【例2】 解不等式 5x-3(2x-1)>-6. 错解: 去括号,得 5x-6x-3>-6,解得x<3. 诊断: 去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号. 正解: 去括号,得 5x-6x+3>-6, 所以-x>-9,所以x<9. 三、移项时,不改变符号 【例3】 解不等式 4x-5<2x-9. 错解: 移项,得 4x+2x<-9-5, 即6x<-14,所以 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点. 正解: 移项,得 4x-2x<-9+5, 解得2x<-4,所以x<-2. 四、去分母时,忽视分数线的括号作用 【例4】 解不等式 错解: 去分母,得 6x-2x-5>14,解得 诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用. 正解: 去分母,得 6x-(2x-5)>14, 去括号,得 6x-2x+5>14,解得 五、不等式两边同除以负数,不改变方向 【例5】 解不等式 3x-6<1+7x. 错解: 移项,得 3x-7x<1+6, 即 -4x<7,所以 诊断: 将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解. 正解: 移项,得 3x-7x<1+6, 即-4x<7, 所以x> 【例6】 x2与a的和不是正数用不等式表示. 错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数. 正解: x2+a≤0. 【例7】 求不等式的非负整数解. 错解及分析: 整理得,3x≤16,所以故其非负整数解是1,2,3,4,5. 本例的解题过程没有错误,错在对“非负整数”的理解. 正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5. 【例8】 解不等式3-5(x-2)-4(-1+5x)<0. 错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以 本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘. 正解:去括号得3-x+10+4-20x<0, 即-21x<-17,所以 【例9】 解不等式7x-6<4x-9. 错解及分析:移项,得 7x+4x<-9-6, 即11x<-15,所以 一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号. 正解:移项,得7x-4x<-9+6, 即3x<-3,所以x<-1. 【例10】 解不等式 错解及分析:去分母,得 3+2(2-3x)≤5(1+x). 即11x≥2,所以 错误的原因是在去分母时漏乘了不含分母的一项“3”. 正解:去分母,得 30+2(2-3x)≤5(1+x). 即11x≥29,所以 【例11】 解不等式6x-6≤1+7x. 错解及分析:移项,得6x-7x≤1+6. 即-x≤7,所以x<-7. 将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解. 正解:移项,得6x-7x<1+6. 即-x≤7,所以x≥-7. 【例12】 解关于x的不等式m(x-2)>x-2. 错解: 化简,得(m-1)x>2(m-1),所以x>2. 诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0. 正解: 化简,得(m-1)x>2(m-1), ① 当m-1>0时,x>2; ② 当m-1<0时,x<2; ③ 当m-1=0时,无解. 【例13】 解不等式(a-1)x>3. 错解: 系数化为1,得x>. 诊断: 此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论. 正解: ① 当a-1>0时,x>; ② 当a=1时,0×x>3,不等式无解; ③ 当a-1<0时,x<. 【例14】 不等式组的解集为 . 错解: 两个不等式相加,得 x-1<0,所以x<1. 诊断: 这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解 正解: 解不等式组,得. 在同一条数轴上表示出它们的解集,如图, 所以不等式组的解集为:0<x< 【例15】 解不等式组 错解: 因为5x-3>4x+2,且4x+2>3x-2, 所以 5x-3>3x-2. 移项,得5x-3x>-2+3. 解得 x>. 诊断: 上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集. 正解: 由5x-3>4x+2,得x>5. 由4x+2>3x-2,得x>-4. 综合x>5和x>-4,得原不等式组的解集为x>5. 【例16】解不等式组 错解:由不等式2x+3<7可得x<2. 由不等式5x-6>9可得x>3. 所以原不等式组的解集为2>x>3. 诊断:由不等式性质可得,2>3,这是不可能的. 正解:由不等式2x+3<7可得x<2. 由不等式5x-6>9可得x>3. 所以原不等式组无解. 【例17】 解不等式 错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得 诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号. 正解: 去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得 【例18】 若不等式组的解集为x>2,则a的取值范围是( ). A. a<2 B. a≤2 C. a>2 D. a≥2 错解及分析:原不等式组可分为得a<2,故选A. 当a=2时,原不等式组变为解集也为x>2. 正解:应为a≤2 ,故选B. 【例19】解不等式组 错解:②-①,得不等式组的解集为x<-13. 诊断:错解中把方程组的解法套用到不等式组中. 正解:由不等式2x<7+x得到x<7. 由不等式3x<x-6得到x<-3. 所以原不等式组的解集为x<-3. 第四节、思维点拨 一、巧用乘法 【例1】 解不等式0.125x<3. 【思考与分析】 此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷. 解: 两边同乘以8,得x<24. 二、巧去分母 【例2】 解不等式 【思考与分析】 常规方法是先去分母,但仔细观察就会发现,可先进行移项. 解: 移项,得 合并同类项,得x≥-1. 【例3】 解不等式 【思考与分析】 常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数. 解: 利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2, 去括号,得8x+4-2x+4≤2, 移项,合并同类项,得 6x≤-6两边同时除以6得 x≤-1. 三、根据已知条件取特殊值 【例4】 设a、b是不相等的任意正数,又x=,则x、y这两个数一定是( ) A. 都不大于2 B. 都不小于2 C. 至少有一个大于2 D. 至少有一个小于2 【思考与分析】 不妨取a=1,b=3,得x=10,y=从而排除A、B,再取a=3,b=4,得 ,从而排除D,故选C. 答案:C. 【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案. 四、根据数轴取特殊值 【例5】 不等式组的解集在数轴上表示出来是如下图中的( ) 【思考与分析】 本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒ 答案:D. 【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒ 比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b. 运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小. 【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少? 【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小. 解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y. 因为x>y,所以10x>10y,即10x-10y>0. 所以-(8-10x)>-(8-10y). 又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1. 【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一张全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢? 【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低. 解:设这两家旅行社全票的价格为a元,依题意 东方旅行社的收费为2a+70%a=2.7a, 光明旅行社的收费为3a×80%=2.4a. 因为2.7a-2.4a=0.3a>0, 所以实际上光明旅行社的收费较低. 【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手. 五、巧去括号 【例8】 【思考与分析】 观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便. 解:去中括号,得 去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32, 【思考与分析】 观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便. 解: 去小括号,得 六、巧用“整体思想” 【例9】 解不等式: 【思考与分析】 观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷. 解: 3(2x-1)-9(2x-1)-9<5. 合并同类项得 -6×(2x-1)<14. 解得 反思: 我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线? 【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少. (1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线; (2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线; (3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线. 由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线. 解:需7分. 【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系. 第五节、竞赛数学 【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 . 【思考与分析】 要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式. 解: 原不等式去分母,得 3(2+x)≥2(2x-1), 去括号,移项,合并同类项,得 -x≥-8,即x≤8. 满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11. 这些整数的和为(-9)+(-10)+(-11)=-30. 【例2】 如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么( ). 【思考与分析】 这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案. 解: 关于x的方程3(x+4)=2a+5的解为 关于x的方程的解为 由题意得,解得.因此选D. 【例3】 如果,2+c>2,那么( ). A. a-c>a+c B. c-a>c+a C. ac>-ac D. 3a>2a 【思考与分析】 已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案. 解: 由 所以a<0. 由2+c>2,得c>0,则有-c<c. 两边都加上a,得a-c<a+c,排除A; 由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C; 由a<0,两边都加上2a,得3a<2a,排除D. 答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a. 【例4】 四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 . 【思考与分析】 由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出. 解: 设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2. 由<19, 解得7<m<9. 由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51. 从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点. 一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数: 含绝对值的不等式的性质: (1) ∣a∣≥∣b∣b≤|a|或b≥-|a|, ∣a∣≤∣b∣∣b∣≤a≤∣b∣; (2) ∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣; (3) ∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣. 由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析. 【例5】解不等式 |x-5|-|2x+3|<1. 【分析】 关键是去掉绝对值符号前后的变号.分三个区间讨论: 解: (1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1, 解得x<-7,结合x≤,故x<-7是原不等式的解; (2)当<x≤5时,原不等式化为 -(x-5)-(2x+3)<1, 解得是原不等式的解; (3)当x>5时,原不等式化为: x-5-(2x+3)<1, 解得x>-9,结合x>5,故x>5是原不等式的解. 综合(1),(2),(3)可知,是原不等式的解. 第六节、本章训练 基础训练题 1.不等式x+3<6的非负整数解为( ). A. 1,2 B. 1,2,3 C. 1,2,0 D. 1,2,3,0 2.已知三个连续奇数的和不超过27且大于10,这样的数组共有( ). A. 1个 B. 2个 C. 3个 D. 4个 3.的值不小于-2,则a的取值范围是( ). 4.若+2x的值不大于8-的值,那么x的正整数解是 . 5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠? 6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么? 答案 1. C 2. B 3. C 4. 1,2,3 5.解:设还可以买x根火腿肠. 由题意我们可列不等式5×3+2x≤26, 解得 因为x必须为正整数,所以x=1,2,3,4,5. 答:小明还可以买火腿肠的数目不超过5根. 6.解:17<x<18. 提高训练题 1.解不等式 2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值范围. 3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行? 4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%. 小明说:“可降价100元.” 小英说:“可降价150元.” 小华说:“降价不能超过112元.” 你同意他们谁的说法? 5. 巧解下列不等式: (1) 0.375x-2≤0.5x (2) (4) 6. 解下列不等式: (1) 9-2(x-2)≥6 (2) 12-3x<8-2x 7. 已知 答案 2.解:由题意得我们可列不等式 ≥85,解得x≥87. 3.解:设小明准备了x元钱. 我们由题意可列不等式≥5. 解得x≥510. 所以准备510元或准备610元都可以. 4.解:设降价x元. 5. (1) x≥-16(提示:不等式两边同乘8); 我们可以由题意列不等式398-x-260≥260×10%.解得x≤112. 所以小明和小华的说法是正确的. 强化训练题 1. 若实数a>1,则实数M=a,N=的大小关系是( ). A. P>N>M B. M>N>P C. N>P>M D. M>P>N 2. 若0<a<1,则下列四个不等式中正确的是( ). 3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有( ). ① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac. A.1个 B.2个 C.3个 D.4个. 4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题? 5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x=( ). A. 6 B. 7 C. 8 D. 9 6.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多? 7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。 答案 1. 【分析与解】 由于M、N、P都是含字母的式子,不易比较其大小.不妨用特殊值法.由a>1,取a=4,则M=4,N=2,P=3,易知M>P>N,故选D. 注: 用特殊值法解选择题时,一般取能使运算简单的数为特殊值,如本例取a=4. 3. 【分析与解】 本题不妨取a=2.5,b=0.5,c= -1.5,这样就把利用不等式基本性质解答较难的问题变成了简单的计算题了,易知②、③、④正确,故选C. 4.【思考与解】 首先要清楚记分原则,抓住关键“最后得分不少于50分”,列出不等式解决问题. 方法一: 设小军答对x道题,依题意,得 3x-(20-x)≥50, 解得 x≥17.5. 因为x为正整数,所以x的最小正整数为18. 方法二: 设小军答对x道题,依题意,得 3×20-4(20-x)≥50, 解得 x≥17.5. 因为x为正整数,所以x的最小正整数为18. 方法三: 设小军答错x道题,依题意,得 3×20-4x≥50, 解得 x≤2.5. 因为x为正整数,所以x的最大正整数为2, 所以小军至少答对18道题. 5.C(提示:设大前年物价为1,则前年物价为1+20%,去年物价为1.20×(1+15%)=1.38,预计今年物价为1.38×[1+(15%-5%)]=1.518,明年物价为1.518×[1+(10-x)%]≤1+55%,解得x≥7.9,因为x为整数,最小值为8) 6.解:设商场有本金x元,采取月初出售商品的办法到月末可共获利y1元,采取月末出售商品的办法可以获利y2元,则由题意可得 y1=x·15%+10%(x+15%x)=0.265x, y2=30%x-700=0.3x-700, 所以y1-y2=-0.035(x-20000). 所以当x> 20000时,y1<y2,选月末出售. 当x<20000时,y1>y2,选月初出售. 当x=20000时,y1=y2,任选一种办法. 7.解:设使用寿命超过x小时时,选择节能灯合算. 由题意得 解得x>1000. 所以当这两种灯的使用寿命超过1000小时时,选择节能灯才合算. 综合训练题 一、填空题(每题5分,共30分) 1.若x=3-2a是不等式的一个解,则a的取值范围是 . 2.某份竞赛试卷共20道题,每一题答对得10分,答错或不答扣5分,小明得分超过了90分,则小明至少答对了 道题. 3.已知点P(a、b)在第二象限,向下平移4个单位后,得到点Q,点Q在第三象限,那么 b的取值范围是 . 4.某商品的进价是1000元,售价为1500元,由于销售不好,商店决定降价出售,但又要保证利润不低于5%,那么,商店最多降 元出售此商品. 5.有10名菜农,每人可以种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排 人种甲种蔬菜. 6.有关学生体质健康评价指标规定:握力体重指数m=(握力÷体重)×100,初三男生的合格标准是m≥35.若初三男生小明的体重是50kg,那么小明的握力至少要达到 时才能合格. 二、选择题(每题6分,共30分) 7.若点(3a-2,2b-3)在第二象限,则a、b的取值为( ). 8.不等式4x-6≥7x-15的正整数解有( ). A. 4个 B. 3个 C. 2个 D. 1个 9.不等式的负整数解的积是( ). A. -2 B. 0 C. 2 D. 1 10.若关于x的方程(x-2)+3k=的根是负数,则k的取值是( ). 11.要使,m的取值范围只能是( ). 三、解答题(共40分) 12.(共12分)初三(1)班几个同学毕业前合影留念,每人交0.7元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱尽量用掉的前提下,参加照相的同学至少有多少名? 13.(14分)北京故宫博物馆内门票是每位60元,20人以上(含20人)的团体票可8折优惠.现在有18名游客买20人的团体票,问比买普通票共便宜多少钱?此外,不足20人时,多少人买20人的团体票才比普通票便宜? 14.(14分)从广东某地寄往香港的包裹邮资标准是:1千克(不足1千克按1千克算)77.10元,达到或超过1千克后,每增加1千克(不足1千克按1千克算)加价21.10元.李先生寄出一个包裹的邮资是161.50元,他的包裹的重量在什么范围(单位:千克)? 答案 一、 1.(提示:由解的定义,我们把x=3-2a代入不等式即可得到a的取值范围.) 2.13(提示:由题意,小明的得分是由10×答对的题数-5×答错(或不答)的题数得到的,我们可设小明答对的题数为x,可列不等式10x-5(20-x)>90,解得,题目数只能为整数,所以相当于x≥13) 3. 0<b<4. 4. 450 提示:利润率=,由题意得≥5%,解得x≤450. 5.4(提示:设安排x人种甲种蔬菜,由题意可得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4) 6.17.5(提示:将m=35及小明体重代入已知等式中即可得) 二、 7.C 8.B 9.C 10.A 11.A 三、12.【解题思路】由题意可知,同学太少了,所交的钱不够用;同学太多了,钱剩下的也就多了,我们由 题中的限制条件“每人分一张,将收来的钱尽量用掉”下可以列不等式0.68+0.5x≤0.7x求解,可得至少参加照相的同学人数. 解:设参加照相的至少有x名同学. 由题意可列不等式0.68+0.5x≤0.7x. 解得x≥3.4. 因此参加照相的同学至少有4名同学. 13.【解题思路】我们阅读题目后可知18位游客买普通票费用为1080元,买20人的团体票费用为960元,所以这18位游客买团体票比买普通票便宜,那么在少于20人的情况下到底多少人买团体票比买普通票花的钱少呢? 由题意我们可列不等式60×0.8×20<60x求解. 解:18位游客买普通票费用为1080元,买20人的团体票费用为960元. 1080-960=120元,所以便宜120元. 设不足20人时,x人买20人的团体票比买普通票便宜.由题意可列不等式60×0.8×20<60x. 解得x>16,而x<20,所以x=17,18,19. 14.【解题思路】邮资我们可以从1千克往上1千克1千克的加,可以得到李先生包裹重量的范围,但是这样太麻烦.我们可以由题意列不等式77.1+21.1×(x-1)≤161.50求解,得到李先生包裹重量的范围. 解:设李先生的包裹重x千克,显然,x>1. 由题意我们可列不等式77.1+21.1×(x-1)≤161.50解得x≤5. 又因为x≤4时,邮资小于等于140.40元,不符合题意,所以4<x≤5. - 24 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 不等式 经典 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文