基于ANAYS见面有限元论文.docx
《基于ANAYS见面有限元论文.docx》由会员分享,可在线阅读,更多相关《基于ANAYS见面有限元论文.docx(16页珍藏版)》请在咨信网上搜索。
1、摘要:采用三维弹塑性有限元方法对新坑水库浆砌石双曲拱坝在多种荷载组合作用下的坝体应力及变形进行了多种工况的计算。结果表明,坝体的应力及变形均满足承载要求,但对本工程存在的问题从结构承载的角度分析应进行加固处理,其结论和成果对于其他同类拱坝结构分析具有参考价值。关键词:双曲拱坝,结构建模、网格划分、加载; 有限元分析有限元方法发展到今天。已经成为一门相当复杂的实用工程技术。有限元分析的最终目的是还原一个实际工程系统的数学行为特征。即分析必须针对一个物理原型准确的数学模型。模型包括所有节点、单元、材料属性、实常数、边界条件以及其他用来表现这个物理系统的特征。ANSYS(analysissystem
2、)是一种融结构、热、流体、电磁和声学于一体的大型CANE通用有限元分析软件,可广泛应用于航空航天、机械、汽车交通、电子等一般工业及科学研究领域。该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。ANSYS的学习、应用是一个系统、复杂的工程。由于它涉及到多方面的知识,所以在学习ANSYS的过程中一定要对ANSYS所涉及到的一些理论知识有一个大概的了解,以加深对ANSYS的理解。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
3、它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。在各向同性线性弹性力学中,为了求得应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各
4、向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程和边界条件的表达式。直角坐标系下的弹性力学的基本方程为平衡微分方程:(1)几何方程:(2)物理方程:(3)(1)式中的x、y、z、yz=zy、xz=zx、xy=yx为应力分量,X、Y、Z为单位体积的体力在三个坐标方向的分量;(2)式中的u、v、w为位移矢量的三个分量(简称位移分量),x、y、z、yz、xz、xy为应变分量;(3)式中的E和v分别表示杨氏弹性模量和泊松比。主要解法式(1)、(2)、(3)中有15个变量,15个方程,在给定了边界条件后,从理论上讲应能求解。但由(2)、(3)式
5、可见,应变分量、应力分量和位移分量之间不是彼此独立的,因此求解弹性力学问题通常有两条途径。其一是以位移作为基本变量,归结为在给定的边界条件下求解以位移表示的平衡微分方程,这个方程可以从(1)、(2)、(3)式中消去应变分量和应力分量而得到。其二是以应力作为基本变量,应力分量除了要满足平衡微分方程和静力边界条件外,为保证物体变形的连续性,对应的应变分量还须满足相容方程:在弹性力学中,为克服求解偏微分方程(或方程组)的困难,通常采用试凑法,即根据物体形状的几何特性和受载情况,去试凑位移分量或应力分量;由弹性力学解的唯一性定理,只要所试凑的量满足全部方程和全部边界条件,即为问题的精确解。从数学观点来
6、看,弹性力学方程的定解问题可变为求泛函的极值问题。例如,对于用位移作为基本变量求解的问题,又可以归结为求解变分方程:1=0(7)1是物体的总势能,它是一切满足位移边界条件的位移的泛函。对于稳定平衡状态,精确的位移将使总势能1取最小值的称为最小势能原理。又如对于用应力作为基本变量求解的问题,可归结为求解变分方程:2=0(8)2为物体的总余能,它是一切满足平衡微分方程和静力边界条件的应力分量的泛函。精确的应力分量将使总余能 2取最小值的称为最小余能原理。(7)式等价于用位移表示的平衡微分方程和静力边界条件,而(8)式则等价于用应力表示的相容方程。在求问题的近似解时,上述泛函的极值问题又进而变为函数
7、的极值问题,最后归结为求解线性非齐次代数方程组。还有各种所谓的广义变分原理,其中最一般的是广义势能原理和广义余能原理,它们等价于弹性力学的全部基本方程和边界条件。但和总势能1和总余能2不同,广义势能和广义余能作为应力分量、应变分量和位移分量的泛函,对于精确解,也只取非极值的驻值。由于弹性力学的基本方程是在弹性力学的五条基本假设下通过严密的数学推导得出的,因此弹性力学又称为数学弹性力学。而板壳力学则属于应用弹性力学。因为,它除了引用这五条基本假设外,还对变形和应力的分布作了一些附加假设。从这个意义上讲,材料力学也可纳入应用弹性力学。可见,虽然弹性力学和材料力学都研究杆状构件,但前者所获得的结果是
8、比较精确的。有限元分析(FEA,FiniteElementAnalysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼
9、近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 ANAYS 见面 有限元 论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。