2022版高考数学一轮复习-第二章-函数、导数及其应用-第十讲-函数模型及其应用学案新人教版.doc
《2022版高考数学一轮复习-第二章-函数、导数及其应用-第十讲-函数模型及其应用学案新人教版.doc》由会员分享,可在线阅读,更多相关《2022版高考数学一轮复习-第二章-函数、导数及其应用-第十讲-函数模型及其应用学案新人教版.doc(12页珍藏版)》请在咨信网上搜索。
2022版高考数学一轮复习 第二章 函数、导数及其应用 第十讲 函数模型及其应用学案新人教版 2022版高考数学一轮复习 第二章 函数、导数及其应用 第十讲 函数模型及其应用学案新人教版 年级: 姓名: 第十讲 函数模型及其应用 知识梳理·双基自测 知识点 函数模型及其应用 1.几类常见的函数模型 函数模型 函数解析式 一次函数模型 f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型 f(x)=+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数模型 f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型 f(x)=axn+b(a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=ax(a>1) y=logax(a>1) y=xn(n>0) 在(0,+∞)上的增减性 单调__递增__ 单调__递增__ 单调递增 增长速度 越来越__快__ 越来越__慢__ 相对平稳 图象的变化 随x的增大逐渐表现为与__y轴__平行 随x的增大逐渐表现为与__x轴__平行 随n值变化而各有不同 值的比较 存在一个x0,当x>x0时,有logax<xn<ax 3.解函数应用问题的步骤 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下: 1.函数f(x)=+(a>0,b>0,x>0)在区间(0,]内单调递减,在区间[,+∞)内单调递增. 2.直线上升、对数缓慢、指数爆炸 题组一 走出误区 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=2x的函数值比y=x2的函数值大.( × ) (2)“指数爆炸”是指数型函数y=a·bx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x0,使ax0<x<logax0.( × ) [解析] (1)当x=-1时,2-1<(-1)2. (2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a·bx+c. (3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制. (4)当a∈(0,1)时存在x0,使ax0<x<logax0. 题组二 走进教材 2.(必修1P107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D ) A.收入最高值与收入最低值的比是3∶1 B.结余最高的月份是7月 C.1至2月份的收入的变化率与4至5月份的收入的变化率相同 D.前6个月的平均收入为40万元 3.(必修1P107A组T1改编)在某个物理实验中,测量得变量x和变量y的几组数据,如下表: x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00 则对x,y最适合的拟合函数是( D ) A.y=2x B.y=x2-1 C.y=2x-2 D.y=log2x [解析] 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意,故选D. 4.(必修1P104例5改编)某种动物繁殖量y只与时间x年的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们将发展到( A ) A.200只 B.300只 C.400只 D.500只 [解析] ∵繁殖数量y只与时间x年的关系为y=alog3(x+1),这种动物第2年有100只, ∴100=alog3(2+1),∴a=100,∴y=100log3(x+1), ∴当x=8时,y=100log3(8+1)=100×2=200.故选A. 5.(必修1P107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为__18__万件. [解析] 利润L(x)=20x-C(x)=-(x-18)2+142, 当x=18时,L(x)有最大值. 题组三 走向高考 6.(2020·全国Ⅲ,4)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)( C ) A.60 B.63 C.66 D.69 [解析] 本题以Logistic模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t*)==0.95K,化简得e-0.23(t*-53)=,即0.23(t*-53)=ln 19,所以t*=+53≈+53≈66.故选C. 考点突破·互动探究 考点 函数模型及应用 考向1 利用函数图象刻画实际问题的变化过程——自主练透 例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 (2)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( D ) A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20 ℃的月份有5个 (3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B ) [解析] (1)通过题图可知A不正确,并不是逐月增加,但是每一年是递增的,所以B正确.从图观察C是正确的,D也正确,1月至6月比较平稳,7月至12月波动比较大.故选A. (2)由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;平均最高气温高于20 ℃的月份只有2个,D错误.故选D. (3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A、C、D,选B. 名师点拨 1.用函数图象刻画实际问题的解题思路 将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可. 2.判断函数图象与实际问题变化过程相吻合的两种方法 (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案. 考向2 已知函数模型解决实际问题——师生共研 例2 (2020·北京十一中月考)已知14C的半衰期为5 730年(是指经过5 730年后,14C的残余量占原始量的一半).设14C的原始量为a,经过x年后的残余量为b,残余量b与原始量a的关系为b=ae-kx,其中x表示经过的时间,k为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约__2 292__年.(参考数据:log20.767≈-0.4). [解析] 由题意可知,当x=5 730时,ae-5 730k=a,解得k=.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%. 所以76.7%=e-x,得ln 0.767=-x, x=-5 730×=-5 730×log2 0.767≈2 292. 〔变式训练1〕 (2021·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y=alog4x+b(其中x为销售额,y为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为__1 024__万元. [解析] 依题意得即 解得 所以y=2log4x-2,当y=8时,有2log4x-2=8,解得x=1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型 例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标. 该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=(a>0且a≠1). 若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a的值; (2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t=5时,f(t) =140, 即100·a-60=140,解得a=4. (2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中. (3)①当0<t≤10时,由(1)知,f(t)=100·4-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立; ③当20<t≤40时,f(t)=-15t+640≥140,解得20<t≤. 综上所述,5≤t≤. 故学生的注意力指标至少达到140的时间能保持-5=分钟. 名师点拨 (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值. (2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型 例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3(其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a,b的值; (2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要多少个单位? [分析] (1)→ (2)→ [解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s,此时耗氧量为30个单位,则a+blog3=0,即a+b=0; 当耗氧量为90个单位时,速度为1 m/s, 则a+blog3=1,整理得a+2b=1. 解方程组得 (2)由(1)知,v=a+blog3=-1+log3. 所以要使飞行速度不低于2 m/s,则v≥2, 所以-1+log3≥2,即log3≥3,解得≥27,即Q≥270. 所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要270个单位. 名师点拨 指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题. 〔变式训练2〕 (1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为万件,要使附加税不少于128万元,则R的取值范围是( A ) A.[4,8] B.[6.10] C.[4%,8%] D.[6%,10%] (2)(角度2)一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过__16__min,容器中的沙子只有开始时的八分之一. [解析] (1)根据题意,要使附加税不少于128万元,需×160×R%≥128, 整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=.令y=a,即ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24,∴再经过16 min,容器中的沙子只有开始时的八分之一. 名师讲坛·素养提升 函数y=x+(a>0)模型及应用 例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=x2+x(万元);在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完. (1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本) (2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x万件产品的销售收入为5x万元,依题意得: 当0<x<8时,L(x)=5x--3=-x2+4x-3. 当x≥8时,L(x)=5x--3=35-. 所以L(x)= (2)当0<x<8时,L(x)=-(x-6)2+9, 此时,当x=6时,L(x)取得最大值L(6)=9(万元). 当x≥8时,L(x)=35-≤35-2=35-20=15(万元). 此时,当且仅当x=,即x=10时,L(x)取得最大值15万元. 因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 (1)解决此类问题时一定要关注函数的定义域. (2)利用模型f(x)=ax+求解最值时,注意取得最值时等号成立的条件. 〔变式训练3〕 某村计划建造一个室内面积为800 m2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为__40 m,20 m__时,蔬菜的种植面积最大?最大面积是__648 m2__. [解析] 设矩形温室的左侧边长为x m,则后侧边长为 m,所以蔬菜种植面积y=(x-4)=808-2(4<x<400). 因为x+≥2=80,所以y≤808-2×80=648. 当且仅当x=,即x=40时取等号,此时=20,ymax=648. 即当矩形温室的相邻边长分别为40 m,20 m时,蔬菜的种植面积最大,最大面积是648 m2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 第二 函数 导数 及其 应用 第十 模型 新人
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022版高考数学一轮复习-第二章-函数、导数及其应用-第十讲-函数模型及其应用学案新人教版.doc
链接地址:https://www.zixin.com.cn/doc/2181194.html
链接地址:https://www.zixin.com.cn/doc/2181194.html