2022高考数学一轮复习-选修4-4-第2课时-极坐标方程与参数方程的应用学案北师大版.docx
《2022高考数学一轮复习-选修4-4-第2课时-极坐标方程与参数方程的应用学案北师大版.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习-选修4-4-第2课时-极坐标方程与参数方程的应用学案北师大版.docx(8页珍藏版)》请在咨信网上搜索。
2022高考数学一轮复习 选修4-4 第2课时 极坐标方程与参数方程的应用学案北师大版 2022高考数学一轮复习 选修4-4 第2课时 极坐标方程与参数方程的应用学案北师大版 年级: 姓名: 第2课时 极坐标方程与参数方程的应用 关键能力学案突破 考点 直线的参数方程的应用 【例1】(2020山西晋城一模,理22)在直角坐标系xOy中,曲线C的参数方程为x=6sinα,y=6cosα(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+π3=2. (1)求C的普通方程和l的直角坐标方程; (2)直线l与x轴的交点为P,经过点P的直线m与曲线C交于A,B两点,若PA+PB=43,求直线m的倾斜角. 解题心得在过定点P0(x0,y0)的直线的参数方程中,参数t的几何意义是定点P0(x0,y0)到直线上的点P的数量.若直线与曲线交于两点P1,P2,则|P1P2|=|t1-t2|(t1,t2分别为P1,P2对应的参数),P1P2的中点对应的参数为12(t1+t2);若点P为P1P2的中点,则t1+t2=0. 对点训练1(2020安徽安庆二模,理22)在平面直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ-4sin θ=0,直线l的参数方程为x=12t,y=1+32t(t为参数). (1)求直线l的普通方程和曲线C的直角坐标方程; (2)若直线l与曲线C交于A,B两点,M(0,1),且|MA|>|MB|,求1|MA|-1|MB|的值. 考点 曲线的参数方程的应用 【例2】已知直线l:x=2+t,y=6-2t(t为参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为4ρ2+5ρ2cos2θ-36=0. (1)求曲线C的参数方程和直线l的普通方程; (2)过曲线C上任意一点M作与l夹角为60°的直线,交l于点N,求|MN|的最小值. 解题心得一般地,如果题目中涉及圆、椭圆上的动点或求线段、面积的最值、范围问题时,可考虑用圆、椭圆的参数方程,设曲线上点的坐标,将问题转化为三角恒等问题解决,使解决过程简单明了. 对点训练2已知曲线C的极坐标方程是ρ2=4ρcos θ+6ρsin θ-12,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为x=2-12t,y=1+32t(t为参数). (1)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系; (2)将曲线C向左平移2个单位长度,向下平移3个单位长度,得到曲线D,设曲线D经过伸缩变换x'=x,y'=2y得到曲线E,设曲线E上任一点为M(x,y),求3x+12y的取值范围. 考点 极坐标方程的应用 【例3】(2020安徽合肥三模,22)在平面直角坐标系中,直线m的参数方程为x=tcosα,y=tsinα(t为参数,0≤α<π).以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系.曲线E的极坐标方程为ρ2+2ρcos θ-3=0,直线m与曲线E交于A,C两点. (1)求曲线E的直角坐标方程和直线m的极坐标方程; (2)过原点且与直线m垂直的直线n,交曲线E于B,D两点,求四边形ABCD面积的最大值. 解题心得用极坐标方程解决问题时要注意题目中的几何关系,如两交点A,B的距离可表示为|AB|=|ρ1-ρ2|,如果几何关系不易用极径表示时,应把极坐标方程化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决. 对点训练3(2020河南开封三模,22)在平面直角坐标系xOy中,曲线C1的参数方程为x=cosφ,y=1+sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=23cos θ,曲线C1和C2在第一象限交于点A. (1)求点A的直角坐标; (2)直线θ=αα∈0,π3,ρ∈R与曲线C1,C2在第一象限分别交于点B,C,若△ABC的面积为3,求α的值. 1.应用直线的参数方程在计算直线与圆锥曲线的相交弦的弦长时,不必求出交点坐标,根据参数t的几何意义和弦长公式求解,这样可以避免因运用直线和圆锥曲线的方程所组成的方程组求解导致的烦琐运算. 2.应用曲线的参数方程的优势是通过参数θ简明地表示曲线上任一点坐标,将解析几何中的计算问题化为三角问题,从而运用三角性质及变换公式求解,如求最值,求某个参数取值范围等问题. 3.已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,这种方法比在直角坐标系中求最值的运算量小. 第2课时 极坐标方程与参数方程的应用 关键能力·学案突破 例1解(1)曲线C的普通方程为x2+y2=6. 因为ρcosθ+π3=2,所以ρcosθ-3ρsinθ-4=0, 故直线l的直角坐标方程为x-3y-4=0. (2)点P的坐标为(4,0),设直线m的参数方程为x=4+tcosθ,y=tsinθ(t为参数,θ为倾斜角), 将直线m的参数方程代入曲线C的普通方程得t2+8tcosθ+10=0. 设A,B对应的参数分别为t1,t2,则t1+t2=-8cosθ,t1t2=10,Δ=64cos2θ-40>0,所以|PA|+|PB|=|t1|+|t2|=|t1+t2|=8|cosθ|=43, 得cosθ=±32,且满足Δ>0, 故直线m的倾斜角为π6或5π6. 对点训练1解(1)由直线l的参数方程消去参数t,得直线l的普通方程为y=3x+1,即3x-y+1=0. 将ρcosθ=x,ρsinθ=y代入ρ-4sinθ=0得, 曲线C的直角坐标方程为x2+y2-4y=0. (2)设A,B对应的参数为t1,t2, 将x=12t,y=1+32t代入x2+y2-4y=0,得t2-3t-3=0,所以t1t2=-3,t1+t2=3. 因为直线l过M(0,1),且|MA|>|MB|,所以t1>0,t2<0. 于是|MA|=|t1|=t1,|MB|=|t2|=-t2. 故1|MA|-1|MB|=1t1+1t2=t1+t2t1t2=-33. 例2解(1)将ρ2=x2+y2,ρcosθ=x代入曲线C的极坐标方程中,可得9x2+4y2=36,即x24+y29=1,其参数方程为C:x=2cosφ,y=3sinφ(φ为参数), 直线l的普通方程为2x+y-10=0. (2)设M(2cosφ,3sinφ),则M到l的距离 d=|4cosφ+3sinφ-10|5 =|10-5sin(φ+γ)|5, 当sin(φ+γ)=1时,d取最小值为5,故|MN|的最小值为5sin60°=2153. 对点训练2解(1)由直线l的参数方程消去参数t,得直线l的一般方程为3x+y-23-1=0,∵曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ-12, ∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得曲线C的直角坐标方程为(x-2)2+(y-3)2=1. ∵圆心(2,3)到直线l的距离d=|23+3-23-1|3+1=1=r, ∴直线l和曲线C相切. (2)由题意曲线D为x2+y2=1.曲线D经过伸缩变换x'=x,y'=2y,得到曲线E的方程为x2+y24=1, 则点M的参数方程为x=cosθ,y=2sinθ(θ为参数),∴3x+12y=3cosθ+sinθ=2sinθ+π3, ∴3x+12y的取值范围为[-2,2]. 例3解(1)曲线E的直角坐标方程为(x+1)2+y2=4, 直线m的极坐标方程为θ=α(ρ∈R). (2)设点A,C的极坐标分别为(ρ1,α),(ρ2,α). 由θ=α,ρ2+2ρcosθ-3=0得,ρ2+2ρcosα-3=0, ∴ρ1+ρ2=-2cosα,ρ1ρ2=-3, ∴|AC|=|ρ1-ρ2|=2cos2α+3. 同理得,|BD|=2sin2α+3. ∵S四边形ABCD=12|AC|·|BD|=2cos2α+3·sin2α+3≤cos2α+3+sin2α+3=7, 当且仅当cos2α+3=sin2α+3,即α=π4或3π4时,等号成立, ∴四边形ABCD面积的最大值为7. 对点训练3解(1)已知曲线C1的参数方程为x=cosφ,y=1+sinφ(φ为参数), 消去参数φ得C1:x2+(y-1)2=1. 将曲线C1化为极坐标方程为C1:ρ=2sinθ. 联立曲线C1和C2极坐标方程ρ=23cosθ,ρ=2sinθ得,交点A的极坐标为3,π3, 化为直角坐标为32,32. (2)连接OA(图略),由(1)点A的极坐标3,π3可得,|OA|=3,∠AOx=π3. 将直线θ=α与曲线C1和C2联立可得B(2sinα,α),C(23cosα,α), ∴|OB|=2sinα, |OC|=23cosα, ∠COx=∠BOx=α. ∴∠AOB=∠AOC=π3-α, ∴S△ABC=S△AOC-S△AOB=12|OA|·|OC|sin∠AOC-12|OA|·|OB|·sin∠AOB =123·23cosα·sinπ3-α-123·2sinα·sinπ3-α =3sinπ3-α·(3cosα-sinα) =23sin2π3-α =3. ∴sin2π3-α=12,∵α∈0,π3,∴α=π12.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 选修 课时 坐标 方程 参数 应用 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022高考数学一轮复习-选修4-4-第2课时-极坐标方程与参数方程的应用学案北师大版.docx
链接地址:https://www.zixin.com.cn/doc/2178367.html
链接地址:https://www.zixin.com.cn/doc/2178367.html