2022届高考数学一轮复习-第二章-2.2-函数的单调性与最值课时作业.docx
《2022届高考数学一轮复习-第二章-2.2-函数的单调性与最值课时作业.docx》由会员分享,可在线阅读,更多相关《2022届高考数学一轮复习-第二章-2.2-函数的单调性与最值课时作业.docx(6页珍藏版)》请在咨信网上搜索。
2022届高考数学一轮复习 第二章 2.2 函数的单调性与最值课时作业 2022届高考数学一轮复习 第二章 2.2 函数的单调性与最值课时作业 年级: 姓名: 课时作业5 函数的单调性与最值 [基础达标] 一、选择题 1.[2021·山西名校联考]下列函数中,在区间(0,1)上是增函数的是( ) A.y=|x|B.y=3-x C.y=D.y=-x2+4 2.已知函数f(x)=,则该函数的单调递增区间为( ) A.(-∞,1] B.[3,+∞) C.(-∞,-1] D.[1,+∞) 3.函数y=|x|(1-x)在区间A上是增函数,那么区间A可能是( ) A.(-∞,0) B. C.[0,+∞) D. 4.函数y=的单调递增区间为( ) A.(1,+∞) B. C.D. 5.[2021·河北大名一中月考]下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( ) A.f(x)=B.f(x)=x3 C.f(x)=xD.f(x)=3x 二、填空题 6.如果函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是________. 7.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________. 8.定义在[-2,2]上的函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,x1≠x2,且f(a2-a)>f(2a-2),则实数a的取值范围为________. 三、解答题 9.试讨论函数f(x)=(a≠0)在(-1,1)上的单调性. 10.已知函数f(x)=-(a>0,x>0). (1)求证:f(x)在(0,+∞)上是增函数; (2)若f(x)在上的值域是,求a的值. [能力挑战] 11.[2021·河南鹤壁高中月考]若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( ) A.增函数B.减函数 C.先增后减D.先减后增 12.[2021·全国卷Ⅰ模拟]已知f(x)=在R上为增函数,M=f(a),N=f(log43·log45),则M,N的大小关系是( ) A.M=NB.M>N C.M<ND.M,N的大小不能确定 13.定义新运算:当a≥b时,ab=a;当a<b时,ab=b2,则函数f(x)=(1x)x-(2x),x∈[-2,2]的最大值等于( ) A.-1B.1C.6D.12 课时作业5 1.解析:y=|x|在(0,+∞)上单调递增,y=3-x在R上单调递减,y=在(0,+∞)上单调递减,y=-x2+4在(0,+∞)上单调递减.故选A项. 答案:A 2.解析:设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f(x)的单调递增区间为[3,+∞). 答案:B 3.解析:y=|x|(1-x)== = 画出函数的草图,如图. 由图易知原函数在上单调递增. 答案:B 4.解析:令μ=2x2-3x+1=22-,因为μ=22-在上单调递减,函数y=μ在R上单调递减.所以y=2x2-3x+1在上单调递增. 答案:B 5.解析:f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故A错误;f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错误;f(x)=x在R上是单调递减函数,故C错误;f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调递增函数,故D正确.故选D. 答案:D 6.解析:当a=0时,f(x)=2x-3在定义域R上是单调递增的,故在(-∞,4)上单调递增;当a≠0时,二次函数f(x)的对称轴为x=-,因为f(x)在(-∞,4)上单调递增,所以a<0,且-≥4,解得-≤a<0. 综上,实数a的取值范围是. 答案: 7.解析: 解法一 在同一直角坐标系中,作出函数f(x),g(x)的图象,依题意,h(x)的图象如图所示.易知点A(2,1)为图象的最高点,因此h(x)的最大值为h(2)=1. 解法二 依题意,h(x)= 当0<x≤2时,h(x)=log2x是增函数, 当x>2时,h(x)=3-x是减函数, 所以h(x)在x=2处取得最大值h(2)=1. 答案:1 8.解析:因为函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,x1≠x2,所以函数在[-2,2]上单调递增,所以-2≤2a-2<a2-a≤2,解得0≤a<1.故实数a的取值范围为[0,1). 答案:[0,1) 9.解析:解法一 设-1<x1<x2<1, f(x)=a=a, f(x1)-f(x2)=a-a =,由于-1<x1<x2<1, 所以x2-x1>0,x1-1<0,x2-1<0, 故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上单调递减; 当a<0时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)在(-1,1)上单调递增. 解法二 f′(x)= ==-. 当a>0时,f′(x)<0,函数f(x)在(-1,1)上单调递减; 当a<0时,f′(x)>0,函数f(x)在(-1,1)上单调递增. 10.解析:(1)证明:任取x1>x2>0, 则f(x1)-f(x2)=--+=,因为x1>x2>0, 所以x1-x2>0,x1x2>0, 所以f(x1)-f(x2)>0, 即f(x1)>f(x2), 所以f(x)在(0,+∞)上是增函数. (2)由(1)可知,f(x)在上为增函数, 所以f=-2=, f(2)=-=2, 解得a=. 11.解析:∵y=ax与y=-在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=-<0,∴y=ax2+bx在(0,+∞)上为减函数. 答案:B 12.解析:由题意知1+2a-1≥1+a2,∴(a-1)2≤0,∴a=1.又log43·log45<2<2=1,且f(x)是R上的增函数,∴f(a)=f(1)>f(log43·log45),即M>N.故选B. 答案:B 13.解析:由题意知当-2≤x≤1时,f(x)=x-2,当1<x≤2时,f(x)=x3-2,又f(x)=x-2,f(x)=x3-2在相应的定义域内都为增函数,且f(1)=-1,f(2)=6,所以f(x)的最大值为6. 答案:C- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 第二 2.2 函数 调性 课时 作业
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文