2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、探索性问题.doc
《2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、探索性问题.doc》由会员分享,可在线阅读,更多相关《2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、探索性问题.doc(5页珍藏版)》请在咨信网上搜索。
2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、探索性问题 2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、探索性问题 年级: 姓名: 专题检测(十七) 圆锥曲线中的最值、范围、探索性问题 大题专攻强化练 1.(2019·全国卷Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切. (1)若A在直线x+y=0上,求⊙M的半径. (2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由. 解:(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a). 因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|. 连接MA,由已知得|AO|=2.又⊥,故可得2a2+4=(a+2)2, 解得a=0或a=4. 故⊙M的半径r=2或r=6. (2)存在定点P(1,0),使得|MA|-|MP|为定值. 理由如下: 设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2. 由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x. 因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1. 因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1, 所以存在满足条件的定点P. 2.(2019·武汉部分学校调研)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,且长轴长为8,T为椭圆C上异于A,B的点,直线TA,TB的斜率之积为-. (1)求椭圆C的方程; (2)设O为坐标原点,过点M(8,0)的动直线与椭圆C交于P,Q两点,求△OPQ面积的最大值. 解:(1)设T(x,y)(x≠±4),则直线TA的斜率为k1=,直线TB的斜率为k2=. 于是由k1k2=-,得·=-,整理得+=1(x≠±4),故椭圆C的方程为+=1. (2)由题意设直线PQ的方程为x=my+8, 由得(3m2+4)y2+48my+144=0, Δ=(48m)2-4×144×(3m2+4)=12×48(m2-4)>0, 即m2>4, yP+yQ=-,yPyQ=. |PQ|=·=, 点O到直线PQ的距离d= . 故S△OPQ=×|PQ|×d==≤4, 故△OPQ面积的最大值为4. 3.(2019·湖南省湘东六校联考)已知椭圆C:+=1(a>b>0)的离心率e=,点A(b,0),B,F分别为椭圆的上顶点和左焦点,且|BF|·|BA|=2. (1)求椭圆C的方程. (2)若过定点M(0,2)的直线l与椭圆C交于G,H两点(G在M,H之间),设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由. 解:(1)设椭圆的焦距为2c,由离心率e=得a=2c.① 由|BF|·|BA|=2,得a·=2,∴ab=2.② a2-b2=c2,③ 由①②③可得a2=4,b2=3, ∴椭圆C的方程为+=1. (2)设直线l的方程为y=kx+2(k>0), 由得(3+4k2)x2+16kx+4=0,可知Δ>0,∴k>. 设G(x1,y1),H(x2,y2),则x1+x2=,+=(x1+x2-2m,k(x1+x2)+4),=(x2-x1,y2-y1)=(x2-x1,k(x2-x1)). ∵菱形的对角线互相垂直,∴(+)·=0, ∴(1+k2)(x1+x2)+4k-2m=0,得m=-, 即m=-,∵k>,∴-≤m<0. ∴存在满足条件的实数m,m的取值范围为. 4.(2019·郑州市第二次质量预测)椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,A为椭圆上一动点(异于左、右顶点),△AF1F2的周长为4+2,且面积的最大值为. (1)求椭圆C的方程; (2)设B是椭圆上一动点,线段AB的中点为P,OA,OB(O为坐标原点)的斜率分别为k1,k2,且k1k2=-,求|OP|的取值范围. 解:(1)由椭圆的定义及△AF1F2的周长为4+2,可得2(a+c)=4+2, ∴a+c=2+.① 当A在上(或下)顶点时,△AF1F2的面积取得最大值,即bc=,② 由①②及a2=c2+b2,得a=2,b=1,c=, ∴椭圆C的方程为+y2=1. (2)当直线AB的斜率不存在时,k1=-k2,∵k1k2=-,∴k1=±,不妨取k1=,则直线OA的方程为y=x, 不妨取点A,则B,P(,0),∴|OP|=. 当直线AB的斜率存在时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2), 由可得(1+4k2)x2+8kmx+4m2-4=0, Δ=64k2m2-4(4k2+1)(4m2-4)=16(4k2+1-m2)>0,③ ∴x1+x2=,x1x2=.∵k1k2=-, ∴4y1y2+x1x2=0, ∴4(kx1+m)(kx2+m)+x1x2=(4k2+1)x1x2+4km(x1+x2)+4m2=4m2-4-+4m2=0, 化简得2m2=1+4k2(满足③式),∴m2≥. 设P(x0,y0),则x0===,y0=kx0+m=. ∴|OP|2=x+y=+=2-∈, ∴|OP|∈. 综上,|OP|的取值范围为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 二轮 复习 专题 检测 圆锥曲线 中的 范围 探索 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文